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Introduction

This poster is about the computation of Donaldson-Thomas invariants. They are invariants of moduli spaces of sheaves over a smooth
projective variety of low dimension (up to 4). For example, such enumerative invariants are sensible ways of countings curves in surfaces
or 3-folds. Although they were defined first as integrals over a virtual class, the development of a motivic Donaldson-Thomas theory leads

us to methods such as finite fields counting and p-adic integration (the latter was suggested to us by Francesca Carocci).

Donaldson-Thomas invariants

Let X be a smooth surface or 3-fold (over C). We would like to count
the number of sheaves of some fixed topological data over X. Let
M be a moduli of sheaves with fixed topological data v. They often
carries a perfect obstruction theory hence equipped with a virtual
class [M]YY by Behrend-Fantechi. It is a 0-cycle if X is Calabi-Yau

and M is the Hilbert scheme of curves of fixed topological data v.

The Donaldson-Thomas invariants are just :

r
DT, (X) = 1
J [Mvir]

Surprisingly, these numbers can be recovered independently as a
weighted-Euler characteristic

DT (X) = Xvir(M)

whenever the tangent obstruction theory is symmetric. The weight
IS given by a constructible Behrend function vg. In cases where
the moduli is locally written as a critical locus, there is a description
of vg In terms of Milnor fibres. It leads to the definition of a motivic
Donaldson-Thomas invariant, a virtual motive [ M]7°t which
satisfies x([M]1™°%) = xvir(M).

A toy example : the resolved conifold

P-adic integration

Let x € Q). The p-adic norm of x is given by pim, where me Z is

the order of x. The p-adic field Qp is the Cauchy completion of
Q for this norm. For such locally compact abelian groups, there
IS a translation-invariant measure u called Haar measure. We
can normalise it such that u(Z,) = 1, where Z, is the ring of p-
adic integers. From that data, we can compute the measure of
any constructible set using translation invariance. For example,

In=pLpou(pZp+ 1)u---U(pZp+ (p— 1)) gives u(pZp) = %.

Example 1 Letf:Z, — Zp be defined by f(x) =x". We compute
Z(f,s) = [, IfCOIdu. If x € p™(ZP \ pZp), IX"| = 57m. We get

fzp ‘X”\Sdu =U(Zp \ PZp) x 1 + u(pZp \,OZZP) 5% p_Ill)5

1 1 1 1 —1
=(1=5)x 1+ (5= ) X g + - = 52

To define Donaldson-Thomas types invariants via p-adic integration,
we need to generalise the set-up to K-analytic manifold, where
K is a p-adic field (e.g. K =Qp). It can be done locally by using
a gauge form w on M(K) and its associated Weil measure and
globally by gluing these measures into a canonical measure Ucan.

A natural example to test computations of 1-dimensional DT invariants is the resolved conifold, i.e. the

total space of the bundle O(—1) ® O(—1) over P1. The only compact curve in the resolved conifold is P! DRX00x
because O(—1) has no sections. The topological support of sheaves in our moduli is fixed as 8 =[P!]. SRSt
Numerical DT invariants are known, as well as motivic DT invariants. ’

Doing the point counting on M(Fg) in that case only works for x = 1,2 because for x > 2 the moduli is RNV ) f7

singular. These motivic DT invariants have been computed in [3] using a quiver description of the conifold.
The resolved conifold can be obtained by a resolution of singularity. This singularity can be associated with
a hon-commutative quiver algebra. Hilbert scheme of 1-dimensional subschemes can be expressed as

a Crit(f) of a function f : S — C where S is a smooth variety.

Point countings on M([F,)

Another way to count sheaves is via counting Fg-points #M([F,).
This approach has been historically developed with Well’'s conjec-
ture and is often fruitful whenever one would like to compute a
motivic invariant.

Euler characteristic is the most natural motivic invariant. For

example, #IPQQ =qg"+qg" 14+ ...4 1. Substituting g = 1 gives

X(PE) =n+1,and g=-—1 gives X([P’%)

Can we simply count the F4-points on our moduli ?

This works when the moduli is smooth, because in that case the
Behrend function is just £1, so DT invariants are just signed Euler
characteristic. It requires some knowledge about the moduli (e.qg.
equations over Z of its strata). An example to test it is the moduli
of one-dimensional sheaves of low degree on P2. They are not
rational and have been studied by Le Potier, and later on Choi and
Chung (degree 4,5).
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Towards p-adic DT invariants

We can compare Example 1 with motivic computations. f(x) = x"
(over C) has Crit(f) = SpecC[x]/(nx"~1) and can be associated
with a motivic zeta function Z¢(T) which is rational and reads :

L—YvoTNo

Z(T) =[E — Uo, prl - — =5

where [E — Ug,pr] I1s some element of the monodromic
Grothendieck group called motivic nearby cycle. In our case vg =1
and Np = n and we recover the local zeta function of the p-adic
context, the only difference being the nearby cycle.

M iIs a singular moduli embedded in a smooth projective variety
as a critical locus of f : S — C for any moduli of stable sheaves
over a Calabi-Yau 3-fold X. In this case, if f can be expressed as a
K-analytic function over S(K) for K p-adic field, we can study

.

pDT = FOAI°—1 ducan

JS(Ok)

Can we recover motivic computations done for Hilbert schemes of
points case ([1]) and for the conifold case ? What is the good notion
of Imitons?

When a moduli contains strictly semi-stable sheaves, the pBPS In-
variants defined in [2] are defined as integrals of a gerbe function
from the corresponding stack to the coarse moduli.



