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Introduction
This poster is about the computation of Donaldson-Thomas invariants. They are invariants of moduli spaces of sheaves over a smooth
projective variety of low dimension (up to 4). For example, such enumerative invariants are sensible ways of countings curves in surfaces
or 3-folds. Although they were defined first as integrals over a virtual class, the development of a motivic Donaldson-Thomas theory leads
us to methods such as finite fields counting and p-adic integration (the latter was suggested to us by Francesca Carocci).

Donaldson-Thomas invariants
Let X be a smooth surface or 3-fold (over C). We would like to count
the number of sheaves of some fixed topological data over X. Let
M be a moduli of sheaves with fixed topological data ν. They often
carries a perfect obstruction theory hence equipped with a virtual
class [M]r by Behrend-Fantechi. It is a 0-cycle if X is Calabi-Yau
and M is the Hilbert scheme of curves of fixed topological data ν.
The Donaldson-Thomas invariants are just :

DTν(X) =
∫

[Mr ]
1

Surprisingly, these numbers can be recovered independently as a
weighted-Euler characteristic

DTν(X) = χr(M)

whenever the tangent obstruction theory is symmetric. The weight
is given by a constructible Behrend function νB. In cases where
the moduli is locally written as a critical locus, there is a description
of νB in terms of Milnor fibres. It leads to the definition of a motivic
Donaldson-Thomas invariant, a virtual motive [M]mot which
satisfies χ([M]mot) = χr(M).

P-adic integration
Let  ∈ Q. The p-adic norm of  is given by 1

pm , where m ∈ Z is

the order of . The p-adic field Qp is the Cauchy completion of
Q for this norm. For such locally compact abelian groups, there
is a translation-invariant measure μ called Haar measure. We
can normalise it such that μ(Zp) = 1, where Zp is the ring of p-
adic integers. From that data, we can compute the measure of
any constructible set using translation invariance. For example,
Zp = pZp ⊔ (pZp + 1) ⊔ · · · ⊔ (pZp + (p − 1)) gives μ(pZp) =

1
p .

Example 1 Let ƒ : Zp → Zp be defined by ƒ () = n. We compute
Z(ƒ , s) =
∫

Zp
|ƒ ()|sdμ. If  ∈ pm(Zp \ pZp), |n| = 1

pmn . We get

∫

Zp
|n|sdμ = μ(Zp \ pZp) × 1 + μ(pZp \ p2Zp) × 1

pns + . . .

= (1 − 1
p ) × 1 + (

1
p −

1
p2
) × 1

pns + · · · =
p−1

p−p−ns

To define Donaldson-Thomas types invariants via p-adic integration,
we need to generalise the set-up to K-analytic manifold, where
K is a p-adic field (e.g. K = Qp). It can be done locally by using
a gauge form ω on M(K) and its associated Weil measure and
globally by gluing these measures into a canonical measure μcn.

A toy example : the resolved conifold
A natural example to test computations of 1-dimensional DT invariants is the resolved conifold, i.e. the
total space of the bundle O(−1) ⊕ O(−1) over P1. The only compact curve in the resolved conifold is P1

because O(−1) has no sections. The topological support of sheaves in our moduli is fixed as β = [P1].
Numerical DT invariants are known, as well as motivic DT invariants.
Doing the point counting on M(Fq) in that case only works for χ = 1,2 because for χ > 2 the moduli is
singular. These motivic DT invariants have been computed in [3] using a quiver description of the conifold.
The resolved conifold can be obtained by a resolution of singularity. This singularity can be associated with
a non-commutative quiver algebra. Hilbert scheme of 1-dimensional subschemes can be expressed as
a Crit(ƒ ) of a function ƒ : S→ C where S is a smooth variety.

Point countings on M(Fq)
Another way to count sheaves is via counting Fq-points #M(Fq).
This approach has been historically developed with Weil’s conjec-
ture and is often fruitful whenever one would like to compute a
motivic invariant.

Euler characteristic is the most natural motivic invariant. For
example, #Pn

Fq
= qn + qn−1 + · · · + 1. Substituting q = 1 gives

χ(Pn
C
) = n + 1, and q = −1 gives χ(Pn

R
)

Can we simply count the Fq-points on our moduli ?
This works when the moduli is smooth, because in that case the
Behrend function is just ±1, so DT invariants are just signed Euler
characteristic. It requires some knowledge about the moduli (e.g.
equations over Z of its strata). An example to test it is the moduli
of one-dimensional sheaves of low degree on P2. They are not
rational and have been studied by Le Potier, and later on Choi and
Chung (degree 4,5).

Towards p-adic DT invariants
We can compare Example 1 with motivic computations. ƒ () = n
(over C) has Crit(ƒ ) = SpecC[]/(nn−1) and can be associated
with a motivic zeta function Zƒ (T) which is rational and reads :

Zƒ (T) = [E 7→ U0, ρ]
L−ν0TN0

1 − L−ν0TN0

where [E 7→ U0, ρ] is some element of the monodromic
Grothendieck group called motivic nearby cycle. In our case ν0 = 1
and NO = n and we recover the local zeta function of the p-adic
context, the only difference being the nearby cycle.

M is a singular moduli embedded in a smooth projective variety
as a critical locus of ƒ : S → C for any moduli of stable sheaves
over a Calabi-Yau 3-fold X. In this case, if ƒ can be expressed as a
K-analytic function over S(K) for K p-adic field, we can study

pDT =
∫

S(OK )
|ƒ ()|s − 1 dμcn

Can we recover motivic computations done for Hilbert schemes of
points case ([1]) and for the conifold case ? What is the good notion
of limit on s ?
When a moduli contains strictly semi-stable sheaves, the pBPS in-
variants defined in [2] are defined as integrals of a gerbe function
from the corresponding stack to the coarse moduli.
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