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ABSTRACT

We present the first examples of complex al-
gebraic surfaces of general type with canonical
maps of degree 10, 11 and 14. They are con-
structed as quotients of a product of two Fermat
septics by free actions of the group Zsz.
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BACKGROUND

It is well known that the canonical map of a curve
C' of genus at least two is either an embedding or
of degree two. The latter happens if and only if C
is hyperelliptic. For a smooth surface S of general
type the situation is more difficult: suppose that
the image of the canonical map ¢k is a surtace,
then Beauville observed:

27 — 9q -

< 30.
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d:=deg(Px.) <9

In particular, d > 27 if and only it ¢ = 0 and
pg = 3.

Main Question (M.Lopes-R.Pardini). For every
2 < d < 36, does there exist any surface S with
py = 3 and canonical map of degree d?

State of the art. Surfaces S with 3 < d < 9 can be
obtained as bi-double covers of del Pezzo surfaces
of degree d. The only higher degrees, which have
been realised, are

d=12,16,20,24,27,32 and 306,

thanks to the work of Gleissner, Nquyen, Persson,
Pignatelli, Rito and Tan.

Our results. Fill the gaps d = 10, 11 and 14.
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SURFACES WITH CANONICAL MAPS OF DEGREE 10,11 AND 14

FEDERICO FALLUCCA & CHRISTIAN GLEISSNER

MAIN TOOLS IN THIS FIELD

Most surfaces with canonical map of high degree
are constructed as branched abelian covers of P?,
Pt x P! (or modifications of them) by using Par-
dini’s theory. This allows a precise description
of the canonical system for the computation of
d = deg(Pk. ). Our surfaces fit in this framework,
but we can present them in an elementary way as
quotients of a product of plane curves.

OUR CONSTRUCTION

We consider the Fermat septic

F={zf+ 2] +25=0} CP
together with the Zz-action

o(a,b)(xo : 21 1 22) = (To : C¥aq 2 (Bag).

We take a matrix A € GL(2,7), such that the diag-
onal action ¢ X (¢ o A) of Z2 on the product F' x F
is free. Then the quotient surface

S:=(F x F)/Zz

is smooth, regular, of general type and has p, = 3.
Its canonical system is given by three Zz-invariant
holomorphic 2-forms (bi-quartics) on F' x F', defin-
ing the canonical map

. S -—» PZ.
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We resolve the indeterminacy of ® i, by a sequence
of blow-ups leading to a b.p.f linear system |M|.
The canonical map is dominant if and only if
M? > 0. In this case

d = deg(®x,) = M~

By suitable choices of A € GL(2,7), we found ex-
amples of surfaces with d = 10,11 and 14.

FUTURE RESEARCH & ONGOING PHD OF F. FALLUCCA

e Find further examples and realize new degrees, especially prime degrees.

e Understand the canonical map of product-quotients with non-abelian Galois groups.
e Study the image of the canonical map for surfaces with p, > 4.

AN EXAMPLE IN DETAIL

We look at the surface S = (F x F')/Zz defined by
the action ¢ x (¢ o A), where
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The configuration of the 11 exceptional curves
Eim and the strict transforms of F; and G; are il-

lustrated in the picture below.

()

The canonical map, in terms of bi-quartics, is

O, (z,y) = (2125Y5 : TIXSYSYL * ToTYoY1Y3 )

In order to analyse the canonical system, it is con-
venient to define the curves

Fi = le(CEz), Gj L= le(yJ) on S.

They intersect transversally at only one point. The
fixed part of |Kg| is F1 and the mobile one has
4 base points. In addition to blowing up these
points, we need 7 further blow-ups to get a b.p.1f.

linear system |M|. An explicit computation yields

d = deg(®x.) = M* = 10.

CONCLUSION AND FINAL REMARKS

 Qur surfaces are Beauville surfaces. Indeed,
7> acts on the Fermat septic as the Galois
group of the cover

W:F%Pl, / 7),

(g : 21 : x2) — (] : T
which is branched over 0, —1 and oc.

* Beauville surfaces are rigid, i.e. they admit
no non-trivial deformations of their complex

structure.
e There are precisely seven isomorphism
classes of Beauville surfaces with p, = 3

and abelian Galois group. We could clas-
sify them by using a modified version of the

MAGMA algorithm from the paper [2].

e All of the seven surfaces can be realised ex-

actly in the same way as we sketched, but for
different choices of matrices A € GL(2,7).

One of these surfaces has canonical map
composed by a pencil, more precisely the
image is the conic section

(2% = 2y} C P~

Two of them have canonical map of degree
14. For the remaining four surfaces the de-
gree 1S

d=>5,7,10 and 11.
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