UNIVERSITÀ DI TRENTO

#### ABSTRACT

We present the first examples of complex algebraic surfaces of general type with canonical maps of degree 10, 11 and 14. They are constructed as quotients of a product of two Fermat septics by free actions of the group  $\mathbb{Z}_7^2$ .

Keywords: Beauville surface, abelian covers, Surface of general type, Canonical map.

#### BACKGROUND

It is well known that the canonical map of a curve *C* of genus at least two is either an embedding or of degree two. The latter happens if and only if Cis hyperelliptic. For a smooth surface *S* of general type the situation is more difficult: suppose that the image of the canonical map  $\phi_{K_S}$  is a surface, then *Beauville* observed:

$$d := \deg(\Phi_{K_S}) \le 9 + \frac{27 - 9q}{p_g - 2} \le 36.$$

In particular, d > 27 if and only if q = 0 and  $p_g = 3.$ 

Main Question (M.Lopes-R.Pardini). For every  $2 \leq d \leq 36$ , does there exist any surface S with  $p_q = 3$  and canonical map of degree d?

**State of the art.** Surfaces *S* with 3 < d < 9 can be obtained as bi-double covers of del Pezzo surfaces of degree *d*. The only higher degrees, which have been realised, are

d = 12, 16, 20, 24, 27, 32 and 36,

thanks to the work of *Gleissner*, *Nguyen*, *Persson*, Pignatelli, Rito and Tan.

**Our results.** Fill the gaps d = 10, 11 and 14.

#### REFERENCES

- C. Gleissner F. Fallucca. Surfaces with canonical maps of degree 10, 11 and 14. In preparation, 2022.
- [2] C. Rito C. Gleissner, R. Pignatelli. New surfaces with canonical map of high degree. *To appear on Commun. Anal. Geom.*, 2018.

## SURFACES WITH CANONICAL MAPS OF DEGREE 10, 11 AND 14

## FEDERICO FALLUCCA & CHRISTIAN GLEISSNER

### MAIN TOOLS IN THIS FIELD

Most surfaces with canonical map of high degree are constructed as branched abelian covers of  $\mathbb{P}^2$ ,  $\mathbb{P}^1 \times \mathbb{P}^1$  (or modifications of them) by using Pardini's theory. This allows a precise description of the canonical system for the computation of  $d = \deg(\Phi_{K_S})$ . Our surfaces fit in this framework, but we can present them in an elementary way as quotients of a product of plane curves.

#### **OUR CONSTRUCTION**

We consider the *Fermat septic* 

$$F = \{x_0^7 + x_1^7 + x_2^7 = 0\} \subset \mathbb{P}^2$$

together with the  $\mathbb{Z}_7^2$ -action

$$\varphi(a,b)(x_0:x_1:x_2) = (x_0:\zeta_7^a x_1:\zeta_7^b x_2).$$

We take a matrix  $A \in GL(2,7)$ , such that the diagonal action  $\varphi \times (\varphi \circ A)$  of  $\mathbb{Z}_7^2$  on the product  $F \times F$ is free. Then the quotient surface

 $S := (F \times F) / \mathbb{Z}_7^2$ 

is smooth, regular, of general type and has  $p_q = 3$ . Its canonical system is given by three  $\mathbb{Z}_7^2$ -invariant holomorphic 2-forms (*bi-quartics*) on  $F \times F$ , defining the canonical map

$$\Phi_{K_S}: S \dashrightarrow \mathbb{P}^2.$$

We resolve the *indeterminacy* of  $\Phi_{K_S}$  by a sequence of blow-ups leading to a b.p.f linear system |M|. The canonical map is dominant if and only if  $M^2 > 0$ . In this case

 $d = \deg(\Phi_{K_S}) = M^2.$ 

By suitable choices of  $A \in GL(2,7)$ , we found examples of surfaces with d = 10, 11 and 14.

## FUTURE RESEARCH & ONGOING PHD OF F. FALLUCCA

- Find further examples and realize new degrees, especially prime degrees.
- Understand the canonical map of product-quotients with non-abelian Galois groups.
- Study the image of the canonical map for surfaces with  $p_q \ge 4$ .



We look at the surface  $S = (F \times F) / \mathbb{Z}_7^2$  defined by the action  $\varphi \times (\varphi \circ A)$ , where

The canonical map, in terms of bi-quartics, is

 $\Phi_K$ 

In order to analyse the canonical system, it is convenient to define the curves

They intersect transversally at only one point. The fixed part of  $|K_S|$  is  $F_1$  and the mobile one has 4 base points. In addition to blowing up these points, we need 7 further blow-ups to get a b.p.f. linear system |M|. An explicit computation yields



#### AN EXAMPLE IN DETAIL

$$A = \begin{pmatrix} 4 & 5 \\ 3 & 1 \end{pmatrix}$$

$$x_{S}(x,y) = (x_{1}x_{2}^{3}y_{2}^{4} : x_{1}^{2}x_{2}^{2}y_{0}^{3}y_{1} : x_{0}x_{1}^{3}y_{0}y_{1}y_{2}^{2})$$

$$F_i := \operatorname{div}(x_i), \quad G_j := \operatorname{div}(y_j) \quad \text{on } S.$$

 $d = \deg(\Phi_{K_S}) = M^2 = 10.$ 

#### **CONCLUSION AND FINAL REMARKS**

• Our surfaces are *Beauville surfaces*. Indeed,  $\mathbb{Z}_7^2$  acts on the Fermat septic as the Galois group of the cover

$$\pi: F \to \mathbb{P}^1, \qquad (x_0: x_1: x_2) \mapsto (x_1^7: x_2^7),$$

which is branched over 0, -1 and  $\infty$ .

• Beauville surfaces are rigid, i.e. they admit no non-trivial deformations of their complex structure.

• There are precisely seven isomorphism classes of *Beauville surfaces* with  $p_q = 3$ and abelian Galois group. We could classify them by using a modified version of the



Two of them have canonical map of degree 14. For the remaining four surfaces the degree is

# publi.html.



UNIVERSITÄT Bayreuth

The configuration of the 11 exceptional curves  $E_i^{(j)}$  and the strict transforms of  $F_i$  and  $G_j$  are illustrated in the picture below.

MAGMA algorithm from the paper [2]. • All of the seven surfaces can be realised exactly in the same way as we sketched, but for different choices of matrices  $A \in GL(2,7)$ .

• One of these surfaces has canonical map composed by a pencil, more precisely the image is the conic section

$$\{z^2 = xy\} \subset \mathbb{P}^2.$$

$$d = 5, 7, 10$$
 and 11.

#### **CONTACT INFORMATION**

http://www.staff.uni-bayreuth.de/~bt300503/

federico.fallucca@unitn.it

christian.gleissner@uni-bayreuth.de