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Introduction and main definitions

Let X be a smooth projective variety, g > 0 a genus, n > 0 and 8 € Hy(X,Z) a curve class. Fix z1,....,x, € X
general points of X. We are interested in counting maps from C to X in class 3 and passing through =1, ..., z,,.

Assume 2g — 2 + n > 0, so that the moduli stack M, ,, of stable curves is well-defined and let M, (X, 3) be the
moduli stack of n-pointed genus g stable maps in class 3 to X.

There is a map
T :mg,n<X7 6) — mgan X Xxn
[f : (Cvpla 7pn) — X] — ((Caplv "'7]5n)7 (f(p1)7 AR f(pn))

recalling the stabilized domain curve and the image of the marked points under the morphism. One way to
formulate our problem is by looking at the degree of 7.

Note that M, (X, 3) has virtual dimension equal to the dimension of M,,, x X*" if and only if
ci(X).8=r(n+g—1). (1)

Definition of the virtual count

Assume condition (1) is satisfied. Then the virtual Tevelev degree VTevgfn’ﬁ c Q is defined by

ﬂ([mg,n(){, B)]Vir) = vTevgfnﬁ[mg,n x X"

Here [|"" and [| denote the virtual and the usual fundamental classes.

One can also define the geometric count as follows. Let M, ,, € M, ,, and M, (X, 3) C M, (X, 3) be the loci
where the curve C'is smooth and let
T My (X, 8) = My, x X"

be the restriction of 7.
Definition of the geometric count

Assume condition (1) is satisfied. Assume further that for the general point ((C, p1, ..., py), (21, ..., ) € My, X
X" the fiber under 7 consists of finitely many reduced (necessarily non-stacky) points. Then we define the
Geometric Tevelev degrees Tevgfm 5 € Z by

TevX

on.5 = #tgeneral fiber of 7.

Projective line

Using a slightly different point of view, Tevelev [10] computed some Geometric Tevelev degrees of P'. The full
description of Geometric Tevelev of P! have been obtained in [5] via intersection theory on Hurwitz spaces, the
case of P" is instead treated in [6] via limit linear series. Building on these two approaches, these counts are
generalized in [4] for X = P! to the situation where the covers are constrained to have arbitrary ramification
profiles. The following is [5, Theorem 6].

Explicit formulas for P!

Llet g > 0, ¢ € Z, and call
dlg,l]=g+1+¢, and n|g,{] =g+ 3+ 2¢.

Assume n|g, ¢] > 3 and d|g, {] > 1. Then we have:

—(—2
P! g g g
=223 () ea( 1) +o()

Sketch of Proof Let ﬂgjd{gj],n[g,g] be the moduli stack of degree d|g, ¢] and n|g, /] marked admissible covers [8] and

T Hgdigfmlg) = Mgn X Mongg

be the map recalling the marked domain curve (the ramification points are forgotten)_and the marked target curve
(the branch points are forgotten). The advantage of replacing M, (X, d[P]) with H, 4, is that the boundary of
the Hurwitz stack has a very nice stratification.

Up to a combinatorial factor, we want to find the degree of 7 and we do this by computing the degree of the zero
cycle B
?*[(07 D)] S AO (Hg,d[g,f],n[g,f]) .

where the point o -
(C, D) € Mgujg X Mo

is chosen to have the following form: C'is obtained by gluing at two points a smooth genus g — 1 curve containing
n|g, ] — 1 marked points and a smooth genus 0 curve containing 1 marked point, D is a smooth n|g, /|-pointed
genus 0 curve.

The actual fiber 7-![(C, D)] will have excess dimension, so some care must be taken in the analysis. Fixed (C, D),
the Hurwitz cover can degenerate only in one of the following three ways:

Explanation of the picture:

degrees of the map are written in
(D green, the last marking is in blue
‘» a» and the first n[g, ¢] markings are in

l red.

AR AR @D D

Type 3

Type 1 Type 2

From this one deduces the following recursion:

reducing the problem to the genus 0 case. Finally the genus 0 case is treated by hand:

TeVO,n[O,E],d[O,Q — 1 forall ¢ > 0.

Application : Castelnuovo’s classical count of ¢/'s

Let C' be a general smooth genus ¢ curve curve. Fix a degree d > 1 and consider the Brill-Noether locus
G4(C) = {gys on C}

which is smooth of dimension p = g — 2(g — d + 1). Assume p = 0. Thenwe canwrite g = —2¢andd =g+ ¢ + 1
for some ¢ € Z and
GLC) =WHC) = {L € PicY(C) | K°(C, L) > 2} C Pic*(C)

In his famous paper [2] Castelnuovo proved that

deg([Wy () = 5 +1\€! (2\j>

which agrees (after some algebraic manipulations) with Tevfjgjd.
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The quantum Euler class

Denote by (QH*(X,Q), ) the small quantum cohomology ring of X (see [7] for an introduction) and let
H*(X,Q)® H*(X,Q) = QH*(X,Q).
be the multiplication map.
Definition of the Quantum Euler class

The quantum Euler class E of X is the image of the diagonal class [A] under the multiplication map above (note
that [A] lives naturally in H*(X, Q) ® H*(X, Q) via the Kiinneth isomorphism).

This class plays a central role in the computation of Virtual Tevelev degrees. Indeed, we have the following
equality (see [1, Theorem 1.3]):

VTeV;fn,ﬁ = Coeff(P*" x E*Y, ¢°P) (2)

where P is the point class.

Comparison between the virtual and the geometric count

Enumerativity results of Virtual Tevelev Degrees have been studied in [9]. To state their main result [9, Theorem
24] we require additional notation.

Assume X is a Fano variety of dimension r. Define s(X) > 0 to be the smallest positive integer for which there
exists an effective curve class 5 € H,(X,Z) such that

s(X) =c1(X).8

and such that the evaluation map ev; : ﬂo,l(X, B) — X is surjective.
Define ¢t(X) > 0 to be the smallest positive integer for which there exists an effective curve class g € Hy(X,Z)
such that

Enumerativity

Fix a genus g > 0. Assume that:

= there exists k& > 0 such that for all 3 satisfying c¢,(X).3 > k we have ¢;(X).8 > (r — s(X))h*(f*Tx) for all

[f] S M9<X7 ﬁ)’
" s(X)+t(X)>r+1.

Then there exist d|g, X| > 0 such that for all 5 such that ¢;(X).5 > d|g, X] and n = n|g, X, 8] > 0 such that
Equation (1) is satisfied, the Geometric Tevelev degree Tev" . is well-defined and coincides with the Virtual

g,n,0
Tevelev degree vTev), ;.

Simple Example For X = P" we have
VT@VS;L’CZL — (T + 1)9
where L is the class of a line (see [1, Example 2.2]). In particular, for » = 1 and ¢ > 0 we see that
P! . P _
VIeVy nlg0.dig.0 = TV ng0.d.0 = 2"

g,n

Fano Hypersurfaces

Let X C P""! be a smooth Fano hypersurface of dimension r» > 3 and degree m > 2. Note that X is Fano precisely
when m < r + 1. Also, by Lefschetz Hyperplane theorem we have

Hy(X,7Z)=17ZL
where L is the class of a line in X. In particular
QH(X,Q) = H'(X,Q) ®q Qlq]

as Q[g|-module. Although the definition of E involves also the primitive cohomology of X, in [3, Theorem 5], we
were able to obtain explicit simple formulas for E.

The Quantum Euler class for Fano Hypersurfaces

The following equalities hold:

= if m < rthen
E = m_lx(X)H*T +(r4+2—m— X(X))mm_qu*m_2,

= ifm =r 4 1then

E—m X(COHT + Y m™(j — x(X)) ( ! ) (mty [ = o 4+ 1) | g H .

Using this and Equation (2) it is also possible to obtain formulas for vTev, , 4 (in terms of P). In particular, for low
degree hypersurfaces we have (see [1, Theorem 5.19] and [9, Theorem 11]):

Explicit formulas for low degree Fano Hypersurfaces

If » > max(2m — 4,2) and X is not a quadric, then
vTevéfnydL =((m—-11H)"r+2— m)~C’m(d_”)m_9+1

If in addition » > (m + 1)(m — 2), then Tev,, 4 are well-defined for d > d|g, X| and coincide with vTev,, 4.
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