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Introduction and main definitions

Let X be a smooth projective variety, g ≥ 0 a genus, n ≥ 0 and β ∈ H2(X,Z) a curve class. Fix x1, ..., xn ∈ X
general points of X . We are interested in counting maps from C to X in class β and passing through x1, ..., xn.

Assume 2g − 2 + n > 0, so that the moduli stack Mg,n of stable curves is well-defined and let Mg,n(X, β) be the
moduli stack of n-pointed genus g stable maps in class β to X .

There is a map

τ :Mg,n(X, β) −→ Mg,n × X×n

[f : (C, p1, ..., pn) → X ] 7→ ((C̄, p̄1, ..., p̄n), (f (p1), ..., f (pn))
recalling the stabilized domain curve and the image of the marked points under the morphism. One way to

formulate our problem is by looking at the degree of τ .

Note that Mg,n(X, β) has virtual dimension equal to the dimension of Mg,n × X×n if and only if

c1(X).β = r(n + g − 1). (1)

Definition of the virtual count

Assume condition (1) is satisfied. Then the virtual Tevelev degree vTevX
g,n,β ∈ Q is defined by

τ ∗([Mg,n(X, β)]vir) = vTevX
g,n,β[Mg,n × Xn].

Here []vir and [] denote the virtual and the usual fundamental classes.

One can also define the geometric count as follows. Let Mg,n ⊂ Mg,n and Mg,n(X, β) ⊂ Mg,n(X, β) be the loci
where the curve C is smooth and let

τ : Mg,n(X, β) → Mg,n × Xn

be the restriction of τ .

Definition of the geometric count

Assume condition (1) is satisfied. Assume further that for the general point ((C, p1, ..., pn), (x1, ..., xn)) ∈ Mg,n ×
Xn the fiber under τ consists of finitely many reduced (necessarily non-stacky) points. Then we define the

Geometric Tevelev degrees TevX
g,n,β ∈ Z by

TevX
g,n,β = #general fiber of τ.

Projective line

Using a slightly different point of view, Tevelev [10] computed some Geometric Tevelev degrees of P1. The full

description of Geometric Tevelev of P1 have been obtained in [5] via intersection theory on Hurwitz spaces, the

case of Pn is instead treated in [6] via limit linear series. Building on these two approaches, these counts are

generalized in [4] for X = P1 to the situation where the covers are constrained to have arbitrary ramification

profiles. The following is [5, Theorem 6].

Explicit formulas for P1

Let g ≥ 0, ` ∈ Z, and call

d[g, `] = g + 1 + `, and n[g, `] = g + 3 + 2`.

Assume n[g, `] ≥ 3 and d[g, `] ≥ 1. Then we have:
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Sketch of Proof Let Hg,d[g,`],n[g,`] be the moduli stack of degree d[g, `] and n[g, `] marked admissible covers [8] and

τ : Hg,d[g,`],n[g,`] → Mg,n × M 0,n[g,`]

be themap recalling themarked domain curve (the ramification points are forgotten) and themarked target curve

(the branch points are forgotten). The advantage of replacing Mg,n(X, d[P1]) with Hg,d,n is that the boundary of

the Hurwitz stack has a very nice stratification.

Up to a combinatorial factor, wewant to find the degree of τ andwe do this by computing the degree of the zero

cycle

τ ∗[(C, D)] ∈ A0
(
Hg,d[g,`],n[g,`]

)
.

where the point

(C, D) ∈ Mg,n[g,`] × M 0,n[g,`]

is chosen to have the following form: C is obtained by gluing at two points a smooth genus g−1 curve containing
n[g, `] − 1 marked points and a smooth genus 0 curve containing 1 marked point, D is a smooth n[g, `]-pointed
genus 0 curve.
The actual fiber τ−1[(C, D)] will have excess dimension, so some care must be taken in the analysis. Fixed (C, D),
the Hurwitz cover can degenerate only in one of the following three ways:

Explanation of the picture:

degrees of the map are written in

green, the last marking is in blue

and the first n[g, `] markings are in

red.
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From this one deduces the following recursion:

Tevg,n[g,`],d[g,`] = Tevg−1,n[g−1,`],d[g−1,`] + Tevg−1,n[g−1,`+1],d[g−1,`+1]

reducing the problem to the genus 0 case. Finally the genus 0 case is treated by hand:

Tev0,n[0,`],d[0,`] = 1 for all ` ≥ 0.

Application : Castelnuovo’s classical count of g1
d’s

Let C be a general smooth genus g curve curve. Fix a degree d ≥ 1 and consider the Brill-Noether locus

G1
d(C) = {g1

d’s on C}
which is smooth of dimension ρ = g − 2(g − d + 1). Assume ρ = 0. Then we can write g = −2` and d = g + ` + 1
for some ` ∈ Z and

G1
d(C) = W 1

d (C) = {L ∈ Pic
d(C) | h0(C, L) ≥ 2} ⊆ Pic

d(C)

In his famous paper [2] Castelnuovo proved that

deg([W 1
d (C)]) = 1

1 + |`|

(
2|`|
|`|

)
which agrees (after some algebraic manipulations) with TevP1

g,3,d.

The quantum Euler class

Denote by (QH∗(X,Q), ?) the small quantum cohomology ring of X (see [7] for an introduction) and let

H∗(X,Q) ⊗ H∗(X,Q) ?−→ QH∗(X,Q).
be the multiplication map.

Definition of the Quantum Euler class

The quantum Euler class E ofX is the image of the diagonal class [∆] under the multiplication map above (note

that [∆] lives naturally in H∗(X,Q) ⊗ H∗(X,Q) via the Künneth isomorphism).

This class plays a central role in the computation of Virtual Tevelev degrees. Indeed, we have the following

equality (see [1, Theorem 1.3]):

vTevX
g,n,β = Coeff(P?n ? E?g, qβP) (2)

where P is the point class.

Comparison between the virtual and the geometric count

Enumerativity results of Virtual Tevelev Degrees have been studied in [9]. To state their main result [9, Theorem

24] we require additional notation.

Assume X is a Fano variety of dimension r. Define s(X) > 0 to be the smallest positive integer for which there

exists an effective curve class β ∈ H2(X,Z) such that

s(X) = c1(X).β
and such that the evaluation map ev1 : M0,1(X, β) → X is surjective.

Define t(X) > 0 to be the smallest positive integer for which there exists an effective curve class β ∈ H2(X,Z)
such that

t(X) = c1(X).β.

Enumerativity

Fix a genus g ≥ 0. Assume that:

there exists k > 0 such that for all β satisfying c1(X).β > k we have c1(X).β > (r − s(X))h1(f ∗TX) for all
[f ] ∈ Mg(X, β);
s(X) + t(X) ≥ r + 1.

Then there exist d[g, X ] > 0 such that for all β such that c1(X).β > d[g, X ] and n = n[g, X, β] ≥ 0 such that

Equation (1) is satisfied, the Geometric Tevelev degree TevX
g,n,β is well-defined and coincides with the Virtual

Tevelev degree vTevX
g,n,β.

Simple Example For X = Pr we have

vTevPr

g,n,dL = (r + 1)g

where L is the class of a line (see [1, Example 2.2]). In particular, for r = 1 and ` ≥ 0 we see that
vTevP1

g,n[g,`],d[g,`] = TevP1

g,n[g,`],d[g,`] = 2g.

Fano Hypersurfaces

LetX ⊂ Pr+1 be a smooth Fano hypersurface of dimension r ≥ 3 and degreem ≥ 2. Note thatX is Fano precisely

when m ≤ r + 1. Also, by Lefschetz Hyperplane theorem we have

H2(X,Z) = ZL
where L is the class of a line in X . In particular

QH∗(X,Q) = H∗(X,Q) ⊗Q Q[q]
as Q[q]-module. Although the definition of E involves also the primitive cohomology of X , in [3, Theorem 5], we

were able to obtain explicit simple formulas for E.
The Quantum Euler class for Fano Hypersurfaces

The following equalities hold:

if m ≤ r then
E = m−1χ(X)H?r + (r + 2 − m − χ(X))mm−1qH?m−2,

if m = r + 1 then

E = m−1χ(X)H?r +
r∑

j=1

m−1(j − χ(X))
(

r

j − 1

)
(m!)j−1

[
mm − m!

j
(r + 1)

]
qjH?r−j.

Using this and Equation (2) it is also possible to obtain formulas for vTevg,n,dL (in terms of P). In particular, for low
degree hypersurfaces we have (see [1, Theorem 5.19] and [9, Theorem 11]):

Explicit formulas for low degree Fano Hypersurfaces

If r > max(2m − 4, 2) and X is not a quadric, then

vTevX
g,n,dL = ((m − 1)!)n(r + 2 − m)gm(d−n)m−g+1

If in addition r > (m + 1)(m − 2), then Tevg,n,dL are well-defined for d ≥ d[g, X ] and coincide with vTevg,n,dL.
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