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Abstract. We show that Veronese varieties of dimension n ≥ 4 do not carry any Ulrich bundles of
rank r ≤ 3. In order to prove this, we prove that a Veronese embedding of a complete intersection of
dimension m ≥ 4, which if m = 4 is either P4 or has degree d ≥ 2 and is very general and not of type
(2), (2, 2), does not carry any Ulrich bundles of rank r ≤ 3.

1. Introduction

In the theory of vector bundles on a smooth irreducible variety X ⊂ PN , an open problem [ES] that
has attracted attention lately is whether X carries an Ulrich bundle E , that is such that H i(E(−p)) = 0
for i ≥ 0, 1 ≤ p ≤ dimX. Once existence is proved, the next question is what is the Ulrich complexity
of (X,OX(1)), namely the lowest possible rank of an Ulrich bundle.

Perhaps one of the simplest but interesting cases to be considered is when X = Pn and the embedding
in PN is given by OPn(a), for some integer a ≥ 1. Existence of Ulrich bundles is known for high rank:

n! by [B, Thm. 3.1] and a(n2) by [ES, Cor. 5.7]. As for lower rank, to set up the picture, let E be a rank
r Ulrich bundle for (Pn,OPn(a)). If a = 1 it is well-known [ES, Prop. 2.1], [B, Thm. 2.3] that E ∼= O⊕rPn .
Also, if n = 1 one easily sees that E ∼= OP1(a − 1)⊕r. Things are different for n ≥ 2, a ≥ 2. First of
all, one has that r ≥ 2 and there are some strong numerical constraints, since (see for example [ES,
Thm. 5.1]) we have that

(1.1) χ(E(`)) =
r

n!
(`+ a) · · · (`+ na) ∈ Z for every ` ∈ Z.

It follows by [ES, Cor. 5.3] that if p is any prime such that p|a and pt|n!, then pt|r.
The necessary condition (1.1) is easily translated into 2|r(a − 1) when n = 2 and 6|r(a2 − 1) when

n = 3. If n = 2, it follows by [CMR1, Thm. 1] (see also [CG, Thms. 6.1 and 6.2]) that it is in fact
sufficient. If n = 3, it was conjectured in [CMR2, Conj. 1.1] that it is again sufficient and this has been
recently proved in [FP, Thm. 1].

On the other hand, when n ≥ 4, there seems to be an important difference. For example, consider
the case n = 4. We get by [ES, Cor. 5.3] that gcd(a, 6) = 1 for r = 2 and gcd(a, 2) = 1 for r = 3.
Similarly, if n = 5, we find that gcd(a, 30) = 1 for r = 2 and gcd(a, 10) = 1 for r = 3. But assuming
that the latter non-divisibility conditions on a are satisfied, we have that (1.1) holds unconditionally.

Despite the fact that this seems to suggest that, when n ≥ 4, Ulrich bundles of rank 2 or 3 might
exist on Veronese varieties, we show that this is not the case. In fact we have:

Theorem 1. Let n ≥ 4 and a ≥ 2. Then (Pn,OPn(a)) does not carry Ulrich vector bundles of rank
r ≤ 3.

The strategy to prove the above theorem is to consider the Veronese embedding va(Pn) ⊂ PN , take
hyperplane sections and use the fact that the restriction of an Ulrich bundle to the hyperplane section
remains Ulrich. One then gets an Ulrich bundle on a Veronese embedding of a complete intersection of
type (a, . . . , a) in Pn. In order to handle these, we use Ulrich subvarieties (see Section 3) to show the
following generalization of [LR2, Thm. 2]:

Theorem 2. Let s ≥ 1, a ≥ 2,m ≥ 4 and let X ⊂ Pm+s be a smooth m-dimensional complete
intersection of hypersurfaces of degrees (d1, . . . , ds) with di ≥ 1, 1 ≤ i ≤ s and degree d. Assume that
one of the following holds:
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(a) m ≥ 5, or
(b) m = 4 and d = 1, or
(c) m = 4, d ≥ 2, X is very general and (d1, . . . , ds) 6∈ {(2, 1, . . . , 1︸ ︷︷ ︸

s-1

), (2, 2, 1, . . . , 1︸ ︷︷ ︸
s-2

)} (up to permu-

tation).

Then there are no rank r ≤ 3 Ulrich vector bundles with respect to (X,OX(a)).

2. Preliminaries

2.1. Notation and conventions.
Throughout the paper we work over the complex numbers.

We will use the convention
(
`
m

)
= `(`−1)...(`−m+1)

m! for m ≥ 1, ` ∈ Z. Note that
(−`
m

)
= (−1)m

(
`+m−1
m

)
and χ(OPm(`)) =

(
`+m
m

)
.

2.2. Generalities on (Ulrich) vector bundles.
We will need the following statement on vanishing of cohomology.

Lemma 2.1. Let a ≥ 1 be an integer, let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 1
and let F ,G be two vector bundles on X. We have:

(i) If H0(G(2)) = H1(G(1)) = 0, then H1(G) = 0.
(ii) If H0(F(−a)) = H1(F(−2a)) = 0, then H1(F(−j)) = 0 for all j ≥ 2a.

Proof. Let Y ∈ |OX(1)|. To see (i), observe that the exact sequence

0→ G(1)→ G(2)→ G(2)|Y → 0

implies that H0(G(2)|Y ) = 0. In particular we have that dimY ≥ 1 and, since H0(G(1)|Y ) ⊆
H0(G(2)|Y ) = 0, we deduce that H0(G(1)|Y ) = 0. Then, the exact sequence

0→ G → G(1)→ G(1)|Y → 0

implies that H1(G) = 0. This proves (i). We now show (ii) by induction on j. If j = 2a, then
H1(F(−j)) = 0 by hypothesis. If j ≥ 2a+ 1, set G = F(−j). Then H1(G(1)) = H1(F(−j + 1)) = 0 by
induction. Also, since −j + 2 ≤ 1− 2a ≤ −a we have that

H0(G(2)) = H0(F(−j + 2)) ⊆ H0(F(−a)) = 0.

Therefore (i) implies that H1(F(−j)) = 0 and this proves (ii). �

We will often use the following well-known properties of Ulrich bundles.

Lemma 2.2. Let X ⊂ PN , L = OX(1) and let E be a rank r Ulrich bundle. We have:

(i) E|Y is Ulrich on a smooth hyperplane section Y of X.

(ii) If n ≥ 2, then c2(E)Ln−2 = 1
2 [c1(E)2 − c1(E)KX ]Ln−2 + r

12 [K2
X + c2(X)− 3n2+5n+2

2 L2]Ln−2.

Proof. See for example [LR1, Lemma 3.2]. �

3. Ulrich subvarieties

Ulrich subvarieties were defined in [LR2]. We now recall some of the properties that they enjoy.
First, we give a simplified version of [LR2, Lemma 3.2], adapted to our purposes.

Lemma 3.1. Let n ≥ 2, let X ⊂ PN be a smooth irreducible n-dimensional variety and let E be a rank
r ≥ 2 Ulrich bundle with det E = OX(D). Then there is a subvariety Z ⊂ X such that, if Z 6= ∅, we
have:

(i) [Z] = c2(E).
(ii) If r = 2, then ωZ ∼= OZ(KX +D) and c2(Z) = c2(X)|Z − c2(E)|Z +K2

Z −KZKX |Z .
(iii) If r = 3, then

c2(Z) = c2(X)|Z − c2(E)|Z − c1(E)2|Z +KZKX |Z −K2
X |Z + 2KZc1(E)|Z − 2KX |Zc1(E)|Z .

Proof. See [LR2, Lemma 3.2]. �
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Next, we recall the statement of [LR2, Thm. 1]. Let Z ⊂ X be a Cohen-Macaulay, pure codimension
2 subvariety and let D be a divisor on X. The short exact sequence

0→ JZ/X(KX +D)→ OX(KX +D)→ OZ(KX +D)→ 0

determines a coboundary map

γZ,D : Hn−2(OZ(KX +D))→ Hn−1(JZ/X(KX +D))

whose dual, by Serre duality, is

γ∗Z,D : Ext1OX
(JZ/X(D),OX)→ H0(ωZ(−KX −D)).

Then we have

Theorem 3.2. Let X ⊂ PN be a smooth irreducible variety of dimension n ≥ 2, degree d ≥ 2 and let D
be a divisor on X. Then (X,OX(1)) carries a rank r ≥ 2 Ulrich vector bundle E with det E = OX(D)
if and only if there is a subvariety Z ⊂ X such that:

(a) Z is either empty or of pure codimension 2,
(b) if Z 6= ∅ and either r = 2 or n ≤ 5, then Z is smooth (possibly disconnected),
(c) if Z 6= ∅ and n ≥ 6, then Z is either smooth or is normal, Cohen-Macaulay, reduced and with

dim Sing(Z) = n− 6,

and there is a (r − 1)-dimensional subspace W ⊆ Ext1OX
(JZ/X(D),OX) such that the following hold:

(i) If Z 6= ∅, then γ∗Z,D(W ) generates ωZ(−KX −D) (that is the multiplication map

γ∗Z,D(W )⊗OZ → ωZ(−KX −D) is surjective).

(ii) H0(KX + nH −D) = 0.
(iii) H0(JZ/X(D −H)) = 0.

(iv) If n ≥ 3, then H i(JZ/X(D − pH)) = 0 for 1 ≤ i ≤ n− 2, 1 ≤ p ≤ n.

(v) (−1)n−1χ(JZ/X(D − pH)) = (r − 1)χ(KX + pH), for 1 ≤ p ≤ n.

(vi) δZ,W,−nH : Hn−1(JZ/X(D − nH))→W ∗ ⊗Hn(−nH) is either injective or surjective.

Moreover the following exact sequences hold

(3.1) 0→W ∗ ⊗OX → E → JZ/X(D)→ 0

and, if Z 6= ∅,
0→ OX(−D)→ E∗ →W ⊗OX → ωZ(−KX −D)→ 0.

Then we have

Definition 3.3. Let n ≥ 2, d ≥ 2, r ≥ 2 and let D be a divisor on X. An Ulrich subvariety of X
is a subvariety Z ⊂ X carrying a (r − 1)-dimensional subspace W ⊆ Ext1OX

(JZ/X(D),OX) such that
properties (a)-(c) and (i)-(vi) of Theorem 3.2 hold.

Hence, if n ≥ 2, d ≥ 2, r ≥ 2, to each rank r Ulrich vector bundle E with det E = OX(D) one can
associate as in Theorem 3.2 an Ulrich subvariety Z. In particular, by its construction, Z satisfies the
properties of Lemma 3.1.

4. Veronese embeddings of complete intersections

In this section we study Ulrich bundles on Veronese embeddings of complete intersections.
Given integers di ≥ 1, 1 ≤ i ≤ s, we set

d =

s∏
i=1

di, S =

s∑
i=1

di and S′ =

0 if s = 1∑
1≤i<j≤s

didj if s ≥ 2 .

Then we have

Lemma 4.1. Let s ≥ 1, r ≥ 2, a ≥ 2,m ≥ 3 and let X ⊂ Pm+s be a smooth m-dimensional complete
intersection of hypersurfaces of degrees (d1, . . . , ds) with di ≥ 1, 1 ≤ i ≤ s and degree d. Let H ∈
|OX(1)|. Let E be a rank r Ulrich vector bundle for (X,OX(a)) and let Z ⊂ X be the associated Ulrich
subvariety, as in Theorem 3.2 applied to the Veronese embedding va(X) ⊂ PN . Then Z is irreducible,
of dimension m− 2, smooth when r = 2 or when m ≤ 5 and:
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(i) KX = (S − s−m− 1)H.

(ii) c2(X) =
[(
m+s+1

2

)
+ S(S − s−m− 1)− S′

]
H2.

(iii) c1(E) = uH where u = r
2 [(m+ 1)(a− 1) + S − s].

(iv) degH(Z) =
rd

24
[− 4 + 6a− 2a2 − 7m+ 12am− 5a2m− 3m2 + 6am2 − 3a2m2 + 3r − 6ar + 3a2r+

+ 6mr − 12amr + 6a2mr + 3m2r − 6am2r + 3a2m2r − 7s+ 6as− 6ms+ 6ams+

+ 6rs− 6ars+ 6mrs− 6amrs− 3s2 + 3rs2 + 6S − 6aS + 6mS − 6amS − 6rS+

+ 6arS − 6mrS + 6amrS + 6sS − 6rsS − 2S2 + 3rS2 − 2S′)].

(v) χ(OZ(`)) =

(
`+m+ s

m+ s

)
+ (−1)m+1 rd

m!
(u− `− a) · · · (u− `−ma) + (−1)m+s(r − 1)

(
u− `− 1

m+ s

)
+

+
s∑

k=1

(−1)k+m+s
∑

1≤i1<...<ik≤s

[(
di1 + . . .+ dik − `− 1

m+ s

)
+ (r − 1)

(
di1 + . . .+ dik + u− `− 1

m+ s

)]
.

Moreover suppose that one of the following holds:

(1) m ≥ 5, or
(2) m = 4, d = 1, or
(3) m = 4, X = X ′ ∩ F , where X ′ ⊂ P5+s is a smooth complete intersection, F ⊂ P5+s is a

hypersurface of degree a and E = E ′|X , where E ′ is a vector bundle on X ′, or

(4) m = 4, d ≥ 2, X is very general and (d1, . . . , ds) 6∈ {(2, 1, . . . , 1︸ ︷︷ ︸
s-1

), s ≥ 1; (2, 2, 1, . . . , 1︸ ︷︷ ︸
s-2

), s ≥ 2}
(up to permutation).

Then

(vi) c2(E) = eH2 with

e =
r

24
[− 4 + 6a− 2a2 − 7m+ 12am− 5a2m− 3m2 + 6am2 − 3a2m2 + 3r − 6ar + 3a2r+

+ 6mr − 12amr + 6a2mr + 3m2r − 6am2r + 3a2m2r − 7s+ 6as− 6ms+ 6ams+

+ 6rs− 6ars+ 6mrs− 6amrs− 3s2 + 3rs2 + 6S − 6aS + 6mS − 6amS − 6rS+

+ 6arS − 6mrS + 6amrS + 6sS − 6rsS − 2S2 + 3rS2 − 2S′)].

Proof. (i) and (ii) follow from the tangent and Euler sequence of X ⊂ Pm+s. By Lefschetz’s theorem
(see for example [H, Thm. 2.1]), we have that Pic(X) ∼= ZH. Then (iii) follows by [L, Lemma 3.2].
Note that deg va(X) = (aH)m = amd ≥ 2, thus [LR2, Rmk. 4.3] applies. Since H1(OX(−u)) = 0 we
have that Z 6= ∅ by [LR2, Rmk. 4.3(i)], hence Z is of dimension m − 2, smooth when r = 2 or when
m ≤ 5. Also, u ≥ 2a and H i(E(−pa)) = 0 for i ≥ 0, 1 ≤ p ≤ m, hence H1(E(−u)) = 0 by Lemma
2.1(ii). On the other hand, H2(OX(−u)) = 0, hence Z is irreducible by [LR2, Rmk. 4.3(vi)]. Next,
Lemma 3.1(i) gives that [Z] = c2(E), hence (iv) follows by (i)-(iii) and Lemma 2.2(ii) with L = aH. As
for (v), observe first that χ(E(`)) is a polynomial in ` of degree m with leading coefficient rd

m! . On the
other hand, as E is Ulrich for (X,OX(a)), we have that χ(E(−pa)) = 0 for 1 ≤ p ≤ m. Therefore

χ(E(`)) =
rd

m!
(`+ a) · · · (`+ma).

Now, the exact sequence (3.1) twisted by OX(`− u) gives

χ(OZ(`)) = χ(OX(`))− χ(JZ/X(`) = χ(OX(`))− χ(E(`− u)) + (r − 1)χ(OX(`− u))

and computing χ(OX(`)) and χ(OX(`−u)) with the Koszul resolution of JX/Pm+s , we get (v). Finally,
to see (vi), we claim that under any of the hypotheses (1), (2), (3) or (4), the following holds:

(4.1) ∃e ∈ Z such that c2(E) = eH2.

In fact, if m ≥ 5, we have by Lefschetz’s theorem (see for example [H, Thm. 2.1]) that H4(X,Z) ∼= ZH2.
If m = 4 and d = 1, we have that X ∼= P4. Hence (4.1) holds under either one of the hypotheses
(1) or (2). Under hypothesis (3), we have as above that H4(X ′,Z) ∼= Z(H ′)2, H ′ ∈ |OX′(1)|, hence
c2(E ′) = e(H ′)2 on X ′, for some e ∈ Z. Therefore c2(E) = c2(E ′|X) = eH2, so that (4.1) holds under

hypothesis (3). Also, under hypothesis (4), we know again by Noether-Lefschetz’s theorem (see for
example [S, Thm. 1.1]) that every algebraic cohomology class of codimension 2 in X is in ZH2. Since
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[Z] = c2(E) by Lemma 3.1(i), we have that (4.1) holds under hypothesis (4). Now, since [Z] = c2(E)

using (iv) and (4.1), we have that e = degH(Z)
d is as stated in (vi). �

With the above lemma at hand, we now show Theorem 2.

Proof of Theorem 2. First, we dispose of the case r = 1. Since Pic(X) ∼= ZH by Lefschetz’s theorem,
let b ∈ Z and let OX(b) be an Ulrich bundle with respect to (X,OX(a)). Then H0(OX(b − a)) =
Hm(OX(b−ma)) = 0, that is, by Lemma 4.1(i), H0(OX(b−a)) = H0(OX(S−s−m−1−b+ma)) = 0.
But this gives the contradiction m(a− 1) + S − s ≤ b ≤ a− 1.

Hence, from now on, we can assume that r ∈ {2, 3}.
Note that by adding some 1’s to (d1, . . . , ds), we can always assume that s ≥ 4.
Suppose that we have an Ulrich bundle of rank r for (X,OX(a)) and consider the Veronese embedding

va(X) ⊂ PN . If m ≥ 5, taking hyperplane sections and using Lemma 2.2(i), it will be enough to show
that, on the 4-dimensional section of va(X)4 of va(X), there are no Ulrich bundles of rank r.

Now va(X)4 is isomorphic to a smooth complete intersection X̃ ⊂ P4+s̃ of type (d1, . . . , ds̃) =

(d1, . . . , ds, a, . . . , a), with s̃ = s+m− 4 and we have an Ulrich bundle of rank r for (X̃,O
X̃

(a)).

With an abuse of notation, let us call again X the above 4-dimensional section X̃ and (d1, . . . , ds) its
degrees. Hence we have that X ⊂ P4+s is a smooth complete intersection of hypersurfaces of degrees
(d1, . . . , ds) with s ≥ 4, di ≥ 1, 1 ≤ i ≤ s.

Let E be an Ulrich bundle of rank r for (X,OX(a)) and let Z ⊂ X be the associated smooth
irreducible surface by Lemma 4.1.

Observe that, under hypothesis (a) (respectively (b), resp. (c)) of the theorem, we have that condition
(3) (respectively (2), resp. (4)) of Lemma 4.1 hold. In any case, we deduce that Lemma 4.1(vi) holds.

Let H ∈ |OX(1)| and set HZ = H|Z .
Assume that r = 2.
By Lemma 4.1(iii), (iv), (v) and (vi) we see that

(4.2) u = 5(a− 1) + S − s

(4.3) e =
1

12
(70− 150a+ 80a2 + 29s− 30as+ 3s2 − 30S + 30aS − 6sS + 4S2 − 2S′)

(4.4) degH(Z) = H2
Z =

d

12
(70− 150a+ 80a2 + 29s− 30as+ 3s2 − 30S + 30aS − 6sS + 4S2 − 2S′)

and

χ(OZ) =1− d

12
(u− a) · · · (u− 4a) + (−1)s

(
u− 1

s+ 4

)
+

+

s∑
k=1

(−1)k+s
∑

1≤i1<...<ik≤s

[(
di1 + . . .+ dik − 1

s+ 4

)
+

(
di1 + . . .+ dik + u− 1

s+ 4

)].

In the notation (A.1) of the functions in the appendix, this is just

(4.5) χ(OZ) = fa,4,s,2,0(d1, . . . , ds).

Next, we have by Lemma 3.1(ii), (4.2) and Lemma 4.1(i) that

(4.6) KZ = [2S − 2s+ 5(a− 2)]HZ

so that

(4.7) K2
Z = (100− 100a+ 25a2 + 40s− 20as+ 4s2 − 40S + 20aS − 8sS + 4S2) degH(Z).

Using Lemma 3.1(ii), Lemma 4.1(i)-(ii), (4.2), (4.3), (4.6) and (4.7) we get

(4.8) c2(Z) =
1

12
(650−750a+220a2+265s−150as+27s2−270S+150aS−54sS+32S2−10S′) degH(Z).
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Then Noether’s formula Z, χ(OZ) = 1
12 [K2

Z + c2(Z)] gives, using (4.4), (4.7) and (4.8), that

χ(OZ) =
5d

1728
[25900− 82800a+ 95380a2 − 46800a3 + 8320a4 + 21160s− 50220as+ 38336a2s

− 9360a3s+ 6481s2 − 10152as2 + 3852a2s2 + 882s3 − 684as3 + 45s4 − 21600S+

+ 50760aS − 38520a2S + 9360a3S − 13140sS + 20412asS − 7704a2sS − 2664s2S+

+ 2052as2S − 180s3S + 7100S2 − 10800aS2 + 4036a2S2 + 2860sS2 − 2160asS2+

+ 288s2S2 − 1080S3 + 792aS3 − 216sS3 + 64S4 − 880S′ + 1080aS′ − 368a2S′

− 356sS′ + 216asS′ − 36s2S′ + 360SS′ − 216aSS′ + 72sSS′ − 40S2S′ + 4(S′)2].

In the notation (A.8) of the appendix, this is just

(4.9) χ(OZ) = ga,4,s(d1, . . . , ds).

Therefore (4.5) and (4.9) imply that

ga,4,s(d1, . . . , ds)− fa,4,s,2,0(d1, . . . , ds) = 0

that is, by Lemma A.6(1) of the appendix,

m1s(s)(d1, . . . , ds)vs,a,8(d1, . . . , ds) = 0

or, equivalently,

dvs,a,8(d1, . . . , ds) = 0

contradicting Lemma A.7.
Next, assume that r = 3.
By Riemann-Roch we see that

(4.10) KZHZ = −2χ(OZ(1)) + 2χ(OZ) + degH(Z).

Now Lemma 4.1 gives, in the notation (A.1) of the functions in the appendix, that

(4.11) χ(OZ(`)) = fa,4,s,3,`(d1, . . . , ds)

and that

degH(Z) =
d

8
(145− 300a+ 155a2 + 59s− 60as+ 6s2 + (−60 + 60a− 12s)S + 7S2 − 2S′)

that is, in the notation (A.8), that

(4.12) degH(Z) = δs(d1, . . . , ds)

and therefore, in the notation (A.8), (4.10) becomes

(4.13) KZHZ = −2fa,4,s,3,1(d1, . . . , ds) + 2fa,4,s,3,0(d1, . . . , ds) + δs(d1, . . . , ds) = hs(d1, . . . , ds).

On the other hand, we have by [LR2, Rmk. 4.3(ix)] and Lemma 4.1 that [KZ− 5
2(S−s+3a−5)HZ ]2 = 0,

so that, using (4.12), (4.13) and the notation (A.8), we get

(4.14)
K2
Z = 5(S − s+ 3a− 5)KZHZ −

25

4
(S − s+ 3a− 5)2 degH(Z) =

= 5(S − s+ 3a− 5)hs(d1, . . . , ds)−
25

4
(S − s+ 3a− 5)2δs(d1, . . . , ds) = ks(d1, . . . , ds).

Next, we get by Lemma 3.1(iii) and Lemma 4.1(i)-(iii) and (vi), using also the notation (A.8), that
(4.15)

c2(Z) =
1

8
[−1315 + 1800a− 605a2 − 523s+ 360as− 52s2 + 520S − 360aS + 104sS − 49S2 − 6S′]H2

Z

+ (4S − 4s− 20 + 15a)KZHZ =

=
1

8
[−1315 + 1800a− 605a2 − 523s+ 360as− 52s2 + 520S − 360aS + 104sS

− 49S2 − 6S′]δs(d1, . . . , ds) + (4S − 4s− 20 + 15a)hs(d1, . . . , ds) =

= cs(d1, . . . , ds).
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Hence (4.14), (4.15) and Noether’s formula, using also the notation (A.8), give

(4.16) χ(OZ) =
1

12
(K2

Z + c2(Z)) =
ks(d1, . . . , ds) + cs(d1, . . . , ds)

12
= χ′s(d1, . . . , ds).

Thus we get, by (4.11) and (4.16) we have that

χ′s(d1, . . . , ds)− fa,4,s,3,0(d1, . . . , ds) = 0

that is, using Lemma A.6(2),

m1s(s)(d1, . . . , ds)vs,a,9(d1, . . . , ds) = 0

or, equivalently,
dvs,a,9(d1, . . . , ds) = 0

contradicting Lemma A.7.
This concludes the proof in the case r = 3 and therefore also ends the proof of the theorem. �

5. Proof of Theorem 1

In this section we prove our main theorem.

Proof of Theorem 1. Let E be an Ulrich bundle of rank r ≤ 3 for (Pn,OPn(a)). By Theorem 2(b) we
see that the case n = 4 cannot occur. Hence we assume from now on that n ≥ 5.

We can consider E as an Ulrich bundle for (va(Pn),Ova(Pn)(1)), where va(Pn) ⊂ PN is the a-Veronese

embedding. Choosing n − 4 general hyperplanes Hi in PN , we get, by Lemma 2.2(i), a rank r Ulrich
bundle E ′ = E |X′ on X ′ = va(Pn) ∩ H1 ∩ . . . ∩ Hn−4 with respect to OX′(1) = OPN (1)|X′ . On the
other hand, X ′ is isomorphic to a general 4-dimensional smooth complete intersection X ⊂ Pn of type
(a, . . . , a) and, via this isomorphism, E ′ corresponds to a rank r Ulrich bundle E on X with respect
to OX(a). We have then obtained a nonempty open subset U in the parameter space M of complete
intersections X ⊂ Pn of type (a, . . . , a). Since U cannot be contained in a countable union of proper
closed subvarieties of M , we deduce that we can find a very general 4-dimensional smooth complete
intersection X ⊂ Pn of type (a, . . . , a) carrying a rank r Ulrich bundle E with respect to OX(a).

Therefore, setting s = n−4, we have that X ⊂ P4+s is a very general 4-dimensional smooth complete
intersection of type (d1, . . . , ds) = (a, . . . , a) carrying a rank r Ulrich bundle E with respect to OX(a).

Then we get a contradiction by Theorem 2 unless a = 2 and s = 1, 2, that is n = 5, 6. But in the
latter two cases we have a contradiction by [ES, Cor. 5.3].

This concludes the proof. �
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Appendix A. Symmetric functions associated to Veronese embeddings of complete
intersections

Given a smooth complete intersection X ⊂ Pm+s of hypersurfaces of degrees (d1, . . . , ds), a rank r ≥ 2
Ulrich vector bundle E on X with respect to OX(a) and an Ulrich subvariety Z associated to E , we
have some natural symmetric functions of (d1, . . . , ds) as in Lemma 4.1 and as in the proof of Theorem
2. In this section we will lay out the necessary calculations related to them. Several calculations have
been performed by Mathematica. The corresponding codes can be found in [LR].

Definition A.1. Given integers m ≥ 1, s ≥ 1, r ≥ 2, `, consider the polynomials in Q[x1, . . . , xs] given
by

as(`, x1, . . . , xs) =

(
`+m+ s

m+ s

)
+

s∑
k=1

(−1)k+m+s
∑

1≤i1<...<ik≤s

(
xi1 + . . .+ xik − `− 1

m+ s

)
and

bs(x1, . . . , xs) = (−1)m+1 r

m!
(
s∏
i=1

xi)
m∏
j=1

[
r

2
[(m+ 1)(a− 1) +

s∑
i=1

xi − s]− `− ja

]
Next, we set

fa,m,s,r,` = as(`, x1, . . . , xs) + (r − 1)as(`−
r

2
[(m+ 1)(a− 1) +

s∑
i=1

xi − s], x1, . . . , xs) + bs(x1, . . . , xs).

Explicitly we have

fa,m,s,r,` =

(
`+m+ s

m+ s

)
+ (−1)m+1 r

m!
(
s∏
i=1

xi)
m∏
j=1

[
r

2
[(m+ 1)(a− 1) +

s∑
i=1

xi − s]− `− ja

]
+

+ (−1)m+s(r − 1)

( r
2 [(m+ 1)(a− 1) +

s∑
i=1

xi − s]− `− 1

m+ s

)
+

+
s∑

k=1

(−1)k+m+s
∑

1≤i1<...<ik≤s

(
xi1 + . . .+ xik − `− 1

m+ s

)
+

+ (r − 1)
s∑

k=1

(−1)k+m+s
∑

1≤i1<...<ik≤s

(xi1 + . . .+ xik + r
2 [(m+ 1)(a− 1) +

s∑
i=1

xi − s]− `− 1

m+ s

)
.

Lemma A.2.

(1) fa,m,s,r,` is symmetric in x1, . . . , xs.
(2) For any 1 ≤ k ≤ s, the following identity holds in Q[x1, . . . , xk]:

fa,m,k,r,`(x1, . . . , xk) = fa,m,s,r,`(x1, . . . , xk, 1, . . . , 1).

(3) xi | fa,m,s,r,` for all 1 ≤ i ≤ s.

Proof. Same as [LR2, Lemmas A.2, A.3]. �

We will now express the symmetric polynomials fa,m,s,r,` in terms of monomial symmetric polyno-
mials. For this we will use some properties of them, for which we refer for example to [Eg, §1].

Definition A.3. Let s ≥ 1 be an integer and let x1, . . . , xs be indeterminates. Given a partition
λ = {λ1, . . . , λk} with λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 1, if k ≤ s we let mλ(s) be the monomial symmetric
polynomial in x1, . . . , xs corresponding to λ, while if k > s we set mλ(s) = 0.

We will also write mλ(s) = mλ1...λk . We denote by {1k} the partition {1, . . . , 1} of k and we set
m10(s) = 1. For example

mh(s) =

s∑
i=1

xhi for h ≥ 1 and m1s(s) =

s∏
i=1

xi.
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We will consider below the following Q-basis of the vector space of symmetric polynomials with
rational coefficients and of degree at most 4 in s variables:

(A.1) e = {m4(s),m31(s),m22(s),m211(s),m1111(s),m3(s),m21(s),m111(s),m2(s),m11(s),m1(s), 1}.

We can now express any of the functions f ∈ {fa,4,s,2,0, fa,4,s,3,0, fa,4,s,3,1} in terms of the above basis as

(A.2)
f =

m1s(s)

M
[a1m4(s) + a2m31(s) + a3m22(s) + a4m211(s) + a5m1111(s) + a6m3(s) + a7m21(s)+

+ a8m111(s) + a9m2(s) + a10m11(s) + a11m1(s) + a12]

with the coefficients given by the following

Lemma A.4. Let f ∈ {fa,4,s,2,0, fa,4,s,3,0, fa,4,s,3,1}. For all s ≥ 4 the coefficients in (A.2) are:

(i) For fa,4,s,2,0 we have M = 360 and
(1) a1 = 66, a2 = 225, a3 = 320, a4 = 600, a5 = 1125
(2) a6 = 75(−15 + 11a− 3s), a7 = 150(−20 + 15a− 4s)
(3) a8 = 225(−25 + 19a− 5s)
(4) a9 = 10(740− 1125a+ 420a2 + 298s− 225as+ 30s2)
(5) a10 = 75

2 (370− 570a+ 214a2 + 149s− 114as+ 15s2)

(6) a11 = 75
2 (−600 + 1410a− 1070a2 + 260a3 − 365s+ 567as− 214a2s− 74s2 + 57as2 − 5s3)

(7) a12 =
1

8
(215760− 690000a+ 795000a2 − 390000a3 + 69240a4 + 176302s− 418500as

+ 319500a2s− 78000a3s+ 54005s2 − 84600as2 + 32100a2s2 + 7350s3 − 5700as3+

+ 375s4).
(ii) For fa,4,s,3,0 we have M = 1920 and

(1) a1 = 1683, a2 = 6060, a3 = 8770, a4 = 16860, a5 = 32400
(2) a6 = −30300 + 24600a− 6060s, a7 = −84300 + 69000a− 16860s
(3) a8 = −162000 + 133200a− 32400s
(4) a9 = 209050− 345000a+ 140850a2 + 83960s− 69000as+ 8430s2

(5) a10 = 401700− 666000a+ 272700a2 + 161340s− 133200as+ 16200s2

(6) a11 =− 658500 + 1653000a− 1363500a2 + 369000a3 − 398400s+ 663600as− 272700a2s

− 80340s2 + 66600as2 − 5400s3

(7) a12 =802635− 2715000a+ 3386250a2 − 1845000a3 + 371115a4 + 650302s− 1641000as

+ 1359000a2s− 369000a3s+ 197555s2 − 330600as2 + 136350a2s2 + 26670s3

− 22200as3 + 1350s4.
(iii) For fa,4,s,3,1 we have M = 1920 and

(1) a1 = 1683, a2 = 6060, a3 = 8770, a4 = 16860, a5 = 32400
(2) a6 = −32580 + 24600a− 6060s, a7 = −90420 + 69000a− 16860s
(3) a8 = −173520 + 133200a− 32400s
(4) a9 = 240490− 371400a+ 140850a2 + 90080s− 69000as+ 8430s2

(5) a10 = 460740− 716400a+ 272700a2 + 172860s− 133200as+ 16200s2

(6) a11 =− 807900 + 1912200a− 1473300a2 + 369000a3 − 457080s+ 714000as− 272700a2s

− 86100s2 + 66600as2 − 5400s3

(7) a12 =1051035− 3375000a+ 3953850a2 − 2001000a3 + 371115a4 + 797782s− 1899000as

+ 1468800a2s− 369000a3s+ 226715s2 − 355800as2 + 136350a2s2 + 28590s3

− 22200as3 + 1350s4.

Proof. We sketch the proof, since it is similar to the one in [LR2, Lemma A.7].
By Lemma A.2(1) and (3) we see that there exists a symmetric polynomial ps ∈ Q[x1, . . . , xs] of

degree at most 4 such that

f =
m1s(s)

M
ps.
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Thus, we can express ps through the basis (A.1) as follows:

ps =a1m4(s) + a2m31(s) + a3m22(s) + a4m211(s) + a5m1111(s) + a6m3(s)+

+ a7m21(s) + a8m111(s) + a9m2(s) + a10m11(s) + a11m1(s) + a12
(A.3)

with a1, . . . , a12 ∈ Q. By Lemma A.2(2), we have that

(A.4) p4(x1, . . . , x4) = ps(x1, . . . , x4, 1 . . . , 1).

On the other hand, direct calculations show that:

fa,4,4,2,0 =
m14(4)

360
[66m4(4) + 225m31(4) + 320m22(4) + 600m211(4) + 1125m1111(4)

+ (825a− 2025)m3(4) + (2250a− 5400)m21(4) + (4275a− 10125)m111(4)

+ (4200a2 − 20250a+ 24120)m2(4) + (8025a2 − 38475a+ 45225)m11(4)

+ (9750a3 − 72225a2 + 172125a− 133650)m1(4) + 8655a4 − 87750a3 + 323325a2

− 510300a+ 293931].

(A.5)

fa,4,4,3,0 =
m14(4)

1920
[1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

+ (−54540 + 24600a)m3(4) + (−151740 + 69000a)m21(4) + (−291600 + 133200a)m111(4)

+ (679770− 621000a+ 140850a2)m2(4) + (1306260− 1198800a+ 272700a2)m11(4)

+ (−3883140 + 5373000a− 2454300a2 + 369000a3)m1(4)

+ 8617203− 15989400a+ 11003850a2 − 3321000a3 + 371115a4].

(A.6)

fa,4,4,3,1 =
m14(4)

1920
[1683m4(4) + 6060m31(4) + 8770m22(4) + 16860m211(4) + 32400m1111(4)

+ (−56820 + 24600a)m3(4) + (−157860 + 69000a)m21(4) + (−303120 + 133200a)m111(4)

+ (735690− 647400a+ 140850a2)m2(4) + (1411380− 1249200a+ 272700a2)m11(4)

+ (−4359420 + 5833800a− 2564100a2 + 369000a3)m1(4)

+ 10044963− 18084600a+ 12010650a2 − 3477000a3 + 371115a4].

(A.7)

Hence, replacing x5 = . . . = xs = 1 in (A.3) and using [LR2, Lemma A.6] for G = ps, we get an
expression for ps(x1, . . . , x4, 1 . . . , 1) in terms of the basis (A.1) whose coefficients must coincide, by
(A.4), with the ones in (A.5)-(A.7). Solving the corresponding linear systems in the aj ’s, we get (1)-(7)
in (i)-(iii). �

Consider now the following polynomials in Q[x1, . . . , xs]:
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ga,4,s =
m1s(s)

1728
[25900− 82800a+ 95380a2 − 46800a3 + 8320a4 + 21160s− 50220as+ 38336a2s

− 9360a3s+ 6481s2 − 10152as2 + 3852a2s2 + 882s3 − 684as3 + 45s4 + (−21600 + 50760a

− 38520a2 + 9360a3 − 13140s+ 20412as− 7704a2s− 2664s2 + 2052as2 − 180s3)m1(s)

+ (7100− 10800a+ 4036a2 + 2860s− 2160as+ 288s2)m1(s)
2

+ (−1080 + 792a− 216s)m1(s)
3 + 64m1(s)

4 + (−880 + 1080a− 368a2 − 356s+ 216as

− 36s2)m11(s) + (360− 216a+ 72s)m1(s)m11(s)− 40m1(s)
2m11(s) + 4m11(s)

2]

δs =
m1s(s)

8
[145− 300a+ 155a2 + 59s− 60as+ 6s2 + (−60 + 60a− 12s)m1(s) + 7m1(s)

2

− 2m11(s)]

hs =− 2fa,4,s,3,1 + 2fa,4,s,3,0 + δs

ks =5(m1(s)− s+ 3a− 5)− 5)hs −
25

4
(m1(s)− s+ 3a− 5)2δs

cs =
1

8
[−1315 + 1800a− 605a2 − 523s+ 360as− 52s2 + (520− 360a+ 104s)m1(s)

− 49m1(s)
2 − 6m11(s)]δs + [4m1(s)− 4s− 20 + 15a]hs

χ′s =
ks + cs

12
.

(A.8)

Then we have

Lemma A.5. For all s ≥ 1 the following identities hold:

(1) ga,4,s =
5m1s(s)

1728
[64m4(s) + 216m31(s) + 308m22(s) + 576m211(s) + 1080m1111(s)+

(−1080 + 792a− 216s)m3(s) + (−2880 + 2160a− 576s)m21(s)+

(−5400 + 4104a− 1080s)m111(s)+

+ (7100− 10800a+ 4036a2 + 2860s− 2160as+ 288s2)m2(s)+

(13320− 20520a+ 7704a2 + 5364s− 4104as+ 540s2)m11(s)+

(−21600 + 50760a− 38520a2 + 9360a3 − 13140s+ 20412as− 7704a2s− 2664s2+

+ 2052as2 − 180s3)m1(s) + 25900− 82800a+ 95380a2 − 46800a3 + 8320a4 + 21160s

− 50220as+ 38336a2s− 9360a3s+ 6481s2 − 10152as2 + 3852a2s2 + 882s3 − 684as3+

+ 45s4]

(2) δs = m1s (s)
8 [145−300a+155a2+59s−60as+6s2+(−60+60a−12s)m1(s)+7m2(s)+12m11(s)]

(3) hs =
m1s(s)

8
[19m3(s) + 51m21(s) + 96m111(s) + (−255 + 220a− 51s)m2(s)

+ (−480 + 420a− 96s)m11(s) + (1185− 2100a+ 915a2 + 477s− 420as+ 48s2)m1(s)

− 1925 + 5200a− 4575a2 + 1300a3 − 1170s+ 2090as− 915a2s− 237s2 + 210as2 − 16s3]
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(4) ks =
5m1s(s)

32
[41m4(s) + 150m31(s) + 218m22(s) + 422m211(s) + 816m1111(s)

+ (−750 + 598a− 150s)m3(s) + (−2110 + 1702a− 422s)m21(s)

+ (−4080 + 3312a− 816s)m111(s)

+ (5240− 8510a+ 3410a2 + 2103s− 1702as+ 211s2)m2(s)

+ (10130− 16560a+ 6670a2 + 4066s− 3312as+ 408s2)m11(s)

+ (−16650 + 41170a− 33350a2 + 8830a3 − 10060s+ 16514as− 6670a2s− 2026s2 + 1656as2

− 136s3)m1(s) + 20375− 67850a+ 83000a2 − 44150a3 + 8625a4 + 16475s− 40940as

+ 33275a2s− 8830a3s+ 4995s2 − 8234as2 + 3335a2s2 + 673s3 − 552as3 + 34s4]

(5) cs =
m1s(s)

64
[265m4(s) + 924m31(s) + 1330m22(s) + 2524m211(s) + 4800m1111(s)

+ (−4620 + 3860a− 924s)m3(s) + (−12620 + 10580a− 2524s)m21(s)

+ (−24000 + 20160a− 4800s)m111(s)

+ (31210− 52900a+ 22250a2 + 12552s− 10580as+ 1262s2)m2(s)

+ (59380− 100800a+ 42380a2 + 23876s− 20160as+ 2400s2)m11(s)

+ (−96900 + 249500a− 211900a2 + 59300a3 − 58760s+ 100300as− 42380a2s− 11876s2

+ 10080as2 − 800s3)m1(s) + 117325− 407500a+ 524450a2 − 296500a3 + 62225a4 + 95380s

− 247000as+ 210840a2s− 59300a3s+ 29073s2 − 49900as2 + 21190a2s2 + 3938s3 − 3360as3

+ 200s4]

(6) χ′s =
m1s(s)

768
[675m4(s) + 2424m31(s) + 3510m22(s) + 6744m211(s) + 12960m1111(s)

+ (−12120 + 9840a− 2424s)m3(s) + (−33720 + 27600a− 6744s)m21(s)

+ (−64800 + 53280a− 12960s)m111(s)

+ (83610− 138000a+ 56350a2 + 33582s− 27600as+ 3372s2)m2(s)

+ (160680− 266400a+ 109080a2 + 64536s− 53280as+ 6480s2)m11(s)

+ (−263400 + 661200a− 545400a2 + 147600a3 − 159360s+ 265440as− 109080a2s

− 32136s2 + 26640as2 − 2160s3)m1(s) + 321075− 1086000a+ 1354450a2 − 738000a3

+ 148475a4 + 260130s− 656400as+ 543590a2s− 147600a3s+ 79023s2 − 132240as2

+ 54540a2s2 + 10668s3 − 8880as3 + 540s4].

Proof. Immediate from [LR2, Lemma A.5]. �

We wish to compare all of the above functions.
In order to do this, for any a, b ∈ Z, define the polynomial vs,a,b ∈ Q[x1, . . . , xs] by

vs,a,b = bm4(s)+10m22(s)+(50a2−10s−50)m2(s)−250a2−50a2s+5s2+150+(55−b)s−5b+(100+5b)a4.

We have

Lemma A.6. For all s ≥ 4 the following identities hold:

(i) ga,4,s − fa,4,s,2,0 = m1s (s)
4320 vs,a,8.

(ii) χ′s − fa,4,s,3,0 = m1s (s)
3840 vs,a,9.

Proof. Immediate from Lemmas A.4 and A.5. �

We will also need the following crude estimate:

Lemma A.7. Let b ∈ {8, 9}, let a ≥ 2 and let s ≥ 2 be integers. Then for all integers di ≥ 1, 1 ≤ i ≤ s
we have that vs,a,b(d1, . . . , ds) > 0.
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Proof. Note that
vs,1,b = bm4(s) + 10m22(s)− 10sm2(s) + s(5s− b+ 5).

In the notation in [LR2, Lemma A.10] we have that vs,1,b = qs,b and it follows by [LR2, Lemma A.10]
that vs,1,b(d1, . . . , ds) > 0 if

∏s
i=1 di ≥ 2. On the other hand, if

∏s
i=1 di = 1, then one easily checks that

vs,1,b(1, . . . , 1) = 0. Thus

(A.9) vs,1,b(d1, . . . , ds) ≥ 0.

Now observe that
(A.10)
vs,a,b(d1, . . . , ds) = vs,a−1,b(d1, . . . , ds)+5(2a−1)[10(m2(s)(d1, . . . , ds)−s)+b(2a2−2a+1)+10(4a2−4a−3)].

Finally, we proceed by induction on a. If a = 2, (A.10) and (A.9) give

vs,2,b(d1, . . . , ds) = vs,1,b(d1, . . . , ds) + 75[2(m2(s)(d1, . . . , ds)− s) + b+ 10] > 0.

If a ≥ 3 we have by induction that vs,a−1,b(d1, . . . , ds) > 0 and therefore also vs,a,b(d1, . . . , ds) > 0 by
(A.10). �
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