
ON VARIETIES WITH ULRICH TWISTED CONORMAL BUNDLES

VINCENZO ANTONELLI, GIANFRANCO CASNATI, ANGELO FELICE LOPEZ AND DEBADITYA
RAYCHAUDHURY

Abstract. We study varieties X ⊂ Pr such that is N∗X(k) is an Ulrich vector bundle for some integer
k. We first prove that such an X must be a curve. Then we give several examples of curves with N∗X(k)
an Ulrich vector bundle.

1. Introduction

Let X ⊂ Pr be a smooth variety of dimension n ≥ 1. Recall that a vector bundle E on X is called
Ulrich if H i(E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ n. The importance of Ulrich vector bundles is
well-known (see for example [ES, B, CMRPL] and references therein). While the main general problem
about Ulrich vector bundles is their conjectural existence, another line of research around them is what
are the consequences on the geometry of X in the presence of an Ulrich vector bundle. In this vein,
we continue our study of which natural bundles, associated to X and to its embedding in Pr, can be
Ulrich up to some twist.

In previous papers, the third and fourth authors analyzed normal and tangent bundles, see [L, LR]
(see also [BMPT]). In the present paper we study the following question: for which integers k one has
that N∗X(k) is Ulrich?

A first simple consequence can be drawn: if X is degenerate, then (X,H, k) = (Pn,OPn(1), 1), see
Lemma 5.2.

On the other hand, suppose that X is nondegenerate. While in previous cases [L], [LR], examples
of surfaces and threefolds appeared, we find a very different result for the conormal bundle. In fact we
show that the answer to the above question is negative in dimension at least two.

Theorem 1.
Let X ⊂ Pr be a smooth nondegenerate variety such that N∗X(k) is Ulrich. Then X is a curve.

Now, for curves the situation is wide. First of all, there are many examples, at least in P3, stemming
from some classical works [EL, EH, BE] (see Examples 8.1 and 8.2).

We first prove that there is a sharp bound for the degree of a curve having Ulrich twisted conormal
bundle.

Theorem 2.
Let C ⊂ Pc+1 be a smooth nondegenerate curve of degree d and codimension c ≥ 1 such that N∗C(k)

is Ulrich. Then c ≥ 2 and

(1.1) d ≥ c+ 2

2k + c

(
k + c

c+ 1

)
.

Moreover this bound is sharp for c = 2 and k ≡ 1, 3 (mod 6).

On the other hand, the examples mentioned above, Examples 8.1 and 8.2, are all subcanonical curves
in P3. We show that neither the fact of being subcanonical, nor of lying in P3, is a necessary condition,
by producing examples, for unbounded genus, of non-subcanonical curves in P3 and in P4.

Theorem 3.
(i) Let X ⊂ P3 be a general nonspecial curve of genus g and degree d = 2g − 2. Then N∗X(4) is Ulrich
and X is not subcanonical.
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(ii) Let X ⊂ P4 be a general curve of genus g ≥ 29 and degree d = 5g − 5. Then N∗X(3) is Ulrich and
X is not subcanonical.

Note that the nonspecial curve of genus 5 and degree 8 in (i) of the above theorem, is a non-
subcanonical curve realizing equality in Theorem 2.

We believe that many more examples of curves with N∗X(k) Ulrich, can probably be constructed,
by refining the methods, such as using elementary modifications and special degenerations as in [ALY,
BR, R]. One possible direction is given in Remark 8.7.

2. Notation

Throughout the paper we work over the field C of complex numbers. A variety is by definition an
integral separated scheme of finite type over C. A curve (respectively a surface) is a variety of dimension
1 (resp. 2). Moreover, we henceforth establish the following:

Notation 2.1.

• X ⊂ Pr is a smooth closed variety of dimension n ≥ 1 and codimension c = r − n ≥ 1.
• H is a hyperplane divisor.
• NX := NX/Pr is the normal bundle.
• For any sheaf G on X we set G(l) = G(lH).
• d = Hn is the degree of X.
• C is a general curve section of X under H.
• S is a general surface section of X under H, when n ≥ 2.
• g = g(C) = 1

2 [KXH
n−1 + (n− 1)d] + 1 is the sectional genus of X.

• For 1 ≤ i ≤ n− 1, let Hi ∈ |H| be general divisors and set Xn := X and Xi = H1 ∩ · · · ∩Hn−i.
In particular X1 = C,X2 = S.
• s(X) = min{s ≥ 1 : H0(JX/Pr(s)) 6= 0}.

We will also let V = H0(OPr(1)) and consider the exact sequences

(2.1) 0→ Ω1
Pr |X → V ⊗OX(−1)→ OX → 0

and

(2.2) 0→ N∗X → Ω1
Pr |X → Ω1

X → 0.

3. A general fact about projective varieties

We record here a simple but useful fact.

Lemma 3.1. Let X ⊂ Pr be a smooth variety of dimension n ≥ 1. If H0(N∗X(l)) = 0 and π : X →
X ⊂ Pm is an isomorphic projection, then l ≤ min{s(X)− 1, s(X)− 1}.

Proof. Set s = s(X) and suppose that l ≥ s, so that H0(N∗X(s)) = 0. Now the exact sequence

0→ J 2
X/Pr(s)→ JX/Pr(s)→ N∗X(s)→ 0

implies that h0(J 2
X/Pr(s)) = h0(JX/Pr(s)) > 0, hence there is a hypersurface F of degree s such that

X ⊆ Sing(F ). But then a partial derivative of the equation of F would give a hypersurface of degree
s− 1 containing X, a contradiction. Therefore

(3.1) l ≤ s(X)− 1.
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Now let π : X → X ⊂ Pm be an isomorphic projection. We have an exact diagram

0

��

0

��
OX(1)⊕(r−m)

��

∼= // OX(1)⊕(r−m)

��
0 // OX //

∼=
��

OX(1)⊕(r+1) //

��

TPr |X //

��

0

0 // π∗OX // π∗OX(1)⊕(m+1) //

��

π∗TPm |X
//

��

0

0 0

and therefore also an exact diagram

0

��

0

��
OX(1)⊕(r−m)

��

∼= // OX(1)⊕(r−m)

��
0 // TX //

∼=
��

TPr |X //

��

NX
//

��

0

0 // π∗TX
// π∗TPm |X

//

��

π∗NX/Pm
//

��

0

0 0

.

Hence, we deduce an exact sequence

(3.2) 0→ π∗N∗
X/Pm → N∗X → OX(−1)⊕(r−m) → 0.

Since H0(N∗X(l)) = 0 we get that H0(X,N∗
X/Pm(l)) = H0(X,π∗N∗

X/Pm(l)) = 0. Hence applying (3.1)

to X ⊂ Pm we get that l ≤ s(X)− 1 and the lemma is proved. �

4. Generalities on Ulrich bundles

We collect here some well-known facts about Ulrich bundles, to be used sometimes later.

Definition 4.1. Let E be a vector bundle on X. We say that E is Ulrich for (X,H) if H i(E(−p)) = 0
for all i ≥ 0 and 1 ≤ p ≤ n.

We have

Lemma 4.2. Let E be a rank t Ulrich vector bundle for (X,H). Then

(i) c1(E)Hn−1 = t
2 [KX + (n+ 1)H]Hn−1.

(ii) E∗(KX + (n+ 1)H) is also Ulrich for (X,H).
(iii) E is globally generated.
(iv) E is arithmetically Cohen-Macaulay (aCM), that is H i(E(j)) = 0 for 0 < i < n and all j ∈ Z.
(v) E|Y is Ulrich on a smooth hyperplane section Y of X.
(vi) OX(l) is Ulrich if and only if (X,H, l) = (Pn,OPn(1), 0).
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Proof. Well-known. For (i)-(v) see for example [LR, Lemma 3.2]. As for (vi), it is obvious that OPn is
Ulrich for (Pn,OPn(1)). Vice versa, if OX(l) is Ulrich, then it is globally generated by (iii), so that l ≥ 0.
But also H0(OX(l − 1)) = 0, hence l = 0. It follows by [LR, Lemma 3.2(vii)] that d = h0(OX) = 1, so
that (X,H) = (Pn,OPn(1)). �

Lemma 4.3. Let X ⊂ Pr be a smooth variety of dimension n ≥ 3. Let E be a vector bundle on X and
let Y be a smooth hyperplane section of X. If E|Y is Ulrich, then E is Ulrich.

Proof. For j ∈ Z consider the exact sequence

(4.1) 0→ E(j − 1)→ E(j)→ E|Y (j)→ 0.

If 2 ≤ i ≤ n− 2 we have that H i−1(E|Y (j)) = H i(E|Y (j)) = 0 for any j ∈ Z by Lemma 4.2(iv). Hence

(4.1) gives that hi(E(j − 1)) = hi(E(j)) for any j ∈ Z. On the other hand hi(E(j)) = 0 for j � 0 and
it follows that hi(E(j)) = 0 for any j ∈ Z and 2 ≤ i ≤ n− 2.

Suppose now that i ∈ {0, 1} and j ≤ −1. We have that H0(E|Y (j)) = 0 and, since n − 1 ≥ 2, also

that H1(E|Y (j)) = 0 by Lemma 4.2(iv). Hence (4.1) gives that hi(E(j − 1)) = hi(E(j)). On the other

hand, by Serre duality, hi(E(j)) = hn−i(E∗(KX − jH)) = 0 for j � 0 and therefore

(4.2) hi(E(j)) = 0 for i ∈ {0, 1} and j ≤ −1.

Now let E ′ = E∗(KX + (n + 1)H). Then E ′|Y = E∗|Y (KY + nH|Y ) is also Ulrich by Lemma 4.2(ii).

Therefore (4.2) implies that hi(E ′(j)) = 0 for i ∈ {0, 1} and j ≤ −1. By Serre duality we get that
hn−i(E(−n− 1− j)) = hi(E∗(KX + (n+ 1 + j)H)) = hi(E ′(j)) = 0 for i ∈ {0, 1} and j ≤ −1. But this
is the same as hs(E(l)) = 0 for s ∈ {n− 1, n} and l ≥ −n.

Thus we have proved that H i(E(−p)) = 0 for i ≥ 0 and 1 ≤ p ≤ n, that is E is Ulrich. �

5. Ulrich conormal bundles

In this section we will draw some very useful consequences and facts for varieties X ⊂ Pr such that
N∗X(k) is Ulrich.

The first one is a reduction via hyperplane sections.

Lemma 5.1. Let X ⊂ Pc+n be a smooth variety of dimension n and codimension c ≥ 1. If n ≥ 2
and N∗X(k) is Ulrich, then N∗

Xi/Pc+i(k) is Ulrich for all i ∈ {1, . . . , n − 1}. Vice versa, if n ≥ 3 and

N∗
Xi/Pc+i(k) is Ulrich for some i ∈ {2, . . . , n − 1}, then N∗

Xj/Pc+j (k) is Ulrich for all j ∈ {2, . . . , n}
(hence in particular so is N∗X(k)).

Proof. Recall that if Y ⊂ Pm is smooth and Z is a smooth hyperplane section, then

(NY/Pm)|Z ∼= NZ/Pm−1 .

Now if N∗X(k) is Ulrich, then so are all N∗
Xi/Pc+i(k) by Lemma 4.2(v).

Vice versa, if N∗
Xi/Pc+i(k) is Ulrich for some i ∈ {2, . . . , n − 1}, then N∗

Xi+1/Pc+i+1(k) is Ulrich by

Lemma 4.3. Repeating the argument we get that N∗
Xj/Pc+j (k) is Ulrich for all j ∈ {2, . . . , n}. �

We now deal with X degenerate in Pr.

Lemma 5.2. Let X ⊂ Pr be a smooth degenerate variety of dimension n ≥ 1. Then N∗X(k) is Ulrich
if and only if (X,H, k) = (Pn,OPn(1), 1).

Proof. If (X,H) = (Pn,OPn(1)) then N∗X(1) = O⊕cPn is Ulrich.
Vice versa assume that N∗X(k) is Ulrich. Since X is degenerate, N∗X(k) has OX(k − 1) as a direct

summand. Therefore also OX(k−1) is Ulrich and Lemma 4.2(vi) gives that (X,H, k) = (Pn,OPn(1), 1).
�

In the sequel we will then consider only nondegenerate varieties.
We start by collecting some cohomological and numerical conditions.

Lemma 5.3. (cohomological conditions)
Let X ⊂ Pc+n be a smooth nondegenerate variety of dimension n ≥ 1 and codimension c ≥ 1. If

N∗X(k) is Ulrich, we have:
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(i) Hn(OX(l)) = 0 for every l ≥ k − n− 1.
(ii) If n ≥ 2, then X ⊂ Pc+n is projectively normal.

(iii) If n ≥ 2 then q(X) = 0.
(iv) k ≤ min{s(X), s(X)}, where X ⊂ Pr is any isomorphic projection of X.

Proof. By hypothesis N∗X(k) is Ulrich, hence it is aCM by Lemma 4.2(iv).
To see (i) we just need to prove that Hn(OX(k− n− 1)) = 0. Assume that Hn(OX(k− n− 1)) 6= 0,

that is, by Serre duality, H0(KX + (n+ 1− k)H) 6= 0. Then we have an inclusion

NX(−1) ↪→ NX(KX + (n− k)H)

and, since NX(−1) is globally generated, we get that h0(NX(KX + (n − k)H)) 6= 0. On the other
hand, NX(KX + (n+ 1− k)H) is Ulrich by Lemma 4.2(ii), hence h0(NX(KX + (n− k)H)) = 0. This
contradiction proves (i). To see (ii), let P 1(OX(1)) be the sheaf of principal parts and consider, as in
[E, Proof of Thm. 2.4], the following commutative diagram

0

��

0

��
N∗X(1)

∼= //

��

N∗X(1)

��
0 // Ω1

Pc+n(1)|X //

��

V ⊗OX //

��

OX(1) //

∼=
��

0

0 // Ω1
X(1) //

��

P 1(OX(1)) //

��

OX(1) // 0

0 0

.

Pick an integer l ≥ 0. Tensoring the above diagram by OX(l) and observing that

P 1(OX(1))⊗OX(l) ∼= P 1(OX(l + 1))

by [E, (2.2)], we get the commutative diagram

(5.1) V ⊗H0(OX(l))

fl
��

hl

))
H0(P 1(OX(l + 1)))

gl //

��

H0(OX(l + 1))

H1(N∗X(l + 1)).

Now we have that H1(N∗X(l + 1)) = 0 since N∗X is aCM and n ≥ 2. Hence fl is surjective for every
l ≥ 0 and so is gl by [E, Prop. 2.3]. It follows by (5.1) that hl is surjective for every l ≥ 0. Moreover
the commutative diagram

(5.2) V ⊗H0(OPc+n(l)) //

IdV ⊗rl
��

H0(OPc+n(l + 1))

rl+1

��
V ⊗H0(OX(l))

hl // // H0(OX(l + 1))

shows by induction that rl : H0(OPc+n(l)) → H0(OX(l)) is surjective for every l ≥ 0, so that X ⊂ Pr
is projectively normal, that is (ii).

To see (iii) observe that, (2.1) gives an exact sequence

(5.3) 0 // H0(Ω1
Pc+n(1)|X) // V

f // H0(OX(1))
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and f is injective since X is nondegenerate, hence H0(Ω1
Pc+n(1)|X) = 0. Now N∗X(k) is aCM and

therefore H1(N∗X(1)) = 0. Then the exact sequence

(5.4) 0→ N∗X(1)→ Ω1
Pc+n(1)|X → Ω1

X(1)→ 0

shows that H0(Ω1
X(1)) = 0, hence, in particular q(X) = h0(Ω1

X) = 0. This proves (iii). Finally (iv)
follows by Lemma 3.1 since, N∗X(k) being Ulrich, we have that H0(N∗X(k − 1)) = 0. �

Lemma 5.4. (numerical conditions)
Let X ⊂ Pc+n be a smooth nondegenerate variety of dimension n ≥ 1 and codimension c ≥ 1. If

N∗X(k) is Ulrich, we have:

(i) [(k − 2)c− 2]d = (c+ 2)(g − 1).
(ii) c ≥ 2.

(iii) k ≥ 3.

Proof. By hypothesis N∗X(k) is Ulrich. By (2.1) and (2.2) we see that c1(N∗X(k)) = −KX − (c + n +
1− kc)H. Hence Lemma 4.2(i) implies

−(KX + (c+ n+ 1− kc)H)Hn−1 =
c

2

(
KXH

n−1 + (n+ 1)d
)

and this gives KXH
n−1 = (2k − n − 3 − 4(k−1)

c+2 )d. But also KXH
n−1 = 2(g − 1) − (n − 1)d and we

get (i). As for (ii), if c = 1 then N∗X(k) = OX(k − d) and Lemma 4.2(vi) gives that X ⊂ Pr is a linear
space, a contradiction. This proves (ii). To see (iii), since X is nondegenerate, we get from (2.1) that
H0(Ω1

Pc+n |X(1)) = 0. Now (2.2) gives that h0(Ω1
Pc+n |X(k)) ≥ h0(N∗X(k)) > 0 by Lemma 4.2(iii). Hence

k ≥ 2. But if k = 2 then (i) gives that g = 0 and d = c+2
2 . As it is well known, d ≥ c + 1, giving a

contradiction. Thus (iii) holds. �

6. Properties of the surface section

We deduce here some very useful properties of the surface section of some X ⊂ Pr such that N∗X(k)
is Ulrich.

Lemma 6.1. Let X ⊂ Pc+n be a smooth nondegenerate variety of dimension n ≥ 2 and codimension
c ≥ 1. If N∗X(k) is Ulrich, the following inequality holds for the surface section S:

χ(OS) ≥ d
2(c+2)(c+3)(3c+4)(c+12) [(3c4 + 43c3 + 86c2 + 24c)k2 − (15c4 + 229c3 + 624c2 + 432c)k+

+18c4 + 296c3 + 1070c2 + 1368c+ 576].

Proof. Note that N∗S/Pc+2(k) is Ulrich by Lemma 5.1. Therefore, Lemma 5.3(iii) implies that

(6.1) q(S) = 0.

Next, computing the Chern classes of N∗S/Pc+2(k) and applying [C, (2.2)], we get

(6.2) cK2
S + (c+ 12)c2(S) =

6d

c+ 2
[c(c+ 2)k2 − c(5c+ 12)k + 6c2 + 20c+ 12].

Now note that N∗S/Pc+2(k) is semistable by [CH, Thm. 2.9], hence so is N∗S/Pc+2 and the Bogomolov

inequality is

(6.3) d(c+ 3)(4k − 7− 8(k − 1)

c+ 2
) + (c+ 1)K2

S ≥ 2cc2(S).

Then (6.2) and (6.3) give

(6.4) K2
S ≥

d

(c+ 2)(c+ 3)(3c+ 4)
[(12c3 +24c2)k2−(64c3 +204c2 +144c)k+79c3 +351c2 +486c+216].

Finally the inequality on χ(OS) in the statement follows by (6.2), (6.4) and Noether’s formula. �



ON VARIETIES WITH ULRICH TWISTED CONORMAL BUNDLES 7

7. Proofs of main theorems

We start by proving Theorem 2.

Proof of Theorem 2. Since N∗C(k) is Ulrich, it follows that c ≥ 2 by Lemma 5.4(ii) and k ≤ s(C) by
Lemma 5.3(iv). Also Lemma 5.3(i) gives H1(OC(k − 2)) = 0. Therefore we have that H0(JC/Pc+1(k −
1)) = H1(OC(k − 1)) = 0 and the exact sequence

0→ JC/Pc+1(k − 1)→ OPc+1(k − 1)→ OC(k − 1)→ 0

together with Riemann-Roch, shows that

(7.1)

(
k + c

c+ 1

)
= h0(OPc+1(k − 1)) ≤ h0(OC(k − 1)) = d(k − 1)− g + 1.

Also, g − 1 = (k−2)c−2
c+2 d by Lemma 5.4(i) and replacing in (7.1) we get (1.1).

Finally, sharpness for c = 2 and k ≡ 1, 3 (mod 6) follows by [BE, Examples, p. 88], see Example
8.2. �

Next, we prove Theorem 1.

Proof of Theorem 1. Suppose that n ≥ 2. In order to simplify the calculations we set

A = (3c4 + 43c3 + 86c2 + 24c)k2− (15c4 + 229c3 + 624c2 + 432c)k+ 18c4 + 296c3 + 1070c2 + 1368c+ 576

so that it follows by Lemma 6.1 that

(7.2) χ(OS) ≥ dA

2(c+ 2)(c+ 3)(3c+ 4)(c+ 12)
.

Now Lemma 5.1 implies thatN∗S/Pc+2(k) is Ulrich. Hence k ≤ s(S) by Lemma 5.3(iv), H2(OS(k−2)) = 0

by Lemma 5.3(i) and S ⊂ Pc+2 is projectively normal by Lemma 5.3(ii). Therefore, we have that

H0(JS/Pc+2(k − 2)) = H1(JS/Pc+2(k − 2)) = H2(OS(k − 2)) = 0

and the exact sequence

0→ JS/Pc+2(k − 2)→ OPc+2(k − 2)→ OS(k − 2)→ 0

together with Riemann-Roch and Lemma 5.4(i), shows that

(7.3)

(
k + c

c+ 2

)
= h0(OPc+2(k − 2)) = h0(OS(k − 2)) = χ(OS(k − 2)) + h1(OS(k − 2)) ≥

≥ χ(OS) +
d(k − 2)

2

(
3− k +

4(k − 1)

c+ 2

)
.

Setting

B = A+ (k− 2)(c+ 3)(3c+ 4)(c+ 12)[(3− k)(c+ 2) + 4k− 4] = 2(c+ 12)(k− 1)(8ck+ 12k+ 5c2 + 7c)

we see, using (7.2), that (7.3) implies

(7.4)

(
k + c

c+ 2

)
≥ dB

2(c+ 2)(c+ 3)(3c+ 4)(c+ 12)
=
d(k − 1)(8ck + 12k + 5c2 + 7c)

(c+ 2)(c+ 3)(3c+ 4)
.

Since k ≥ 3 by Lemma 5.4(iii), we see that (7.4) gives

d ≤ (c+ 2)(c+ 3)(3c+ 4)

(k − 1)(8ck + 12k + 5c2 + 7c)

(
k + c

c+ 2

)
.

Since N∗X(k) is Ulrich, it follows by Lemma 5.1 that N∗C/Pc+1(k) is Ulrich, hence, using Theorem 2, we

find that
c+ 2

2k + c

(
k + c

c+ 1

)
≤ d ≤ (c+ 2)(c+ 3)(3c+ 4)

(k − 1)(8ck + 12k + 5c2 + 7c)

(
k + c

c+ 2

)
that is equivalent to 2c(c+ 1)(c+ k + 1) ≤ 0, a contradiction. �
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8. Curves

In this section we construct some examples of curves C ⊂ Pc+1 such that N∗C(k) is Ulrich.
First, we give a reinterpretation of two known cases.

Example 8.1. For every integer d ≥ 5 there exists a smooth elliptic curve C ⊂ P3 such that N∗C(3) is
Ulrich.

In fact, it follows by [EL, Prop. §8, page 278] and [EH, Thm. 2(b)] that for every integer d ≥ 5 there
exists a smooth elliptic curve C ⊂ P3 such that H0(NC(−2)) = 0. Since χ(NC(−2)) = 0 we get that
NC(−2) is Ulrich and then also N∗C(3) is Ulrich by Lemma 4.2(ii).

Example 8.2. There are many subcanonical curves X ⊂ P3 with H0(NX(−2)) = 0 (see for example
[BE, Examples, p. 88]), hence with NX(−1) Ulrich. Therefore, since KX = eH for some e ∈ Z, we also
have by Lemma 4.2(ii), that N∗X(e+ 3) is Ulrich.

We now describe the curves in [BE, Examples, p. 88]. Let h ∈ Z such that h ≥ 1, let c2 = h(3h+ 2)
and let t = 3h + 1 (resp. h ≥ 0, c2 = 3h2 + 4h + 1 and t = 3h + 2). Then in loc. cit, there are
examples of smooth curves X ⊂ P3 with N∗X(e + 3) Ulrich, d = t2 + c2 and g = (t − 2)d + 1. We

have e = 2g−2
d = 2t − 4, hence N∗X(k) is Ulrich with k = e + 3 = 2t − 1. In the first case, t = 3h + 1,

we have h = k−1
6 , k ≡ 1(mod 6) and d = 1

3(k2 + 2k). In the second case, t = 3h + 2, we have

h = k−3
6 , k ≡ 3(mod 6) and again d = 1

3(k2 + 2k). In particular they have unbounded k.

The examples above are all subcanonical curves. In order to construct non-subcanonical ones, we
will proceed below by degeneration. We will apply a simple version, in higher rank, of some results in
[HH].

Definition 8.3. Let X be a smooth curve, let N be a rank t vector bundle on X and let K ⊂ P(N )
be a finite subset such that π|K : K → π(K) is injective, where π : P(N )→ X. Then we define

elm−KN = π∗(JK/P(N ) ⊗OP(N )(1)).

We have

Lemma 8.4. Let X be a smooth curve, let M,N be rank t vector bundles and L a line bundle on X.
Let K ⊂ P(N ) be a finite subset such that π|K : K → π(K) is injective, where π : P(N )→ X. Then:

(i) (elm−KN )⊗ L ∼= elm−K(N ⊗L).

(ii) If K is general in P(N ), then h0(elm−KN ) = max{0, h0(N )− ]K}.
(iii) If 0→M→N → Oπ(K) → 0 is an exact sequence, then N ∗ ∼= elm−K(M∗).

Proof. (i) and (ii) follow exactly as in [HH]. Also, as in [HH], we have an exact sequence

(8.1) 0→ elm−KN → N → Oπ(K) → 0.

As for (iii), observe that dualizing the exact sequence

0→ OX(−π(K))→ OX → Oπ(K) → 0

we get that Ext1(Oπ(K),OX) ∼= Oπ(K), hence dualizing the exact sequence in (iii), we get the exact
sequence

0→ N ∗ →M∗ → Oπ(K) → 0

that defines an embedding of K in P(M∗) and therefore N ∗ ∼= elm−K(M∗) by (8.1). �

We can now state a smoothing lemma that allows to construct curves with N∗X(k) Ulrich by degen-
eration.

Lemma 8.5. Let c ≥ 2, s ≥ 1, let P1, . . . , Ps ∈ Pc+1 be general points and set D = {P1, . . . , Ps}. For
each i ∈ {1, . . . , s}, let Li, L

′
i be general lines in Pc+1, each passing through Pi. Suppose that there are

two smooth curves Y,Z ⊂ Pc+1 of degree dY , dZ and genus gY , gZ such that:

(i) D = Y ∩ Z is a general effective divisor of degree s on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ s.

(iii) Either
(iii-1) NZ/Pc+1 is stable, or
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(iii-2) H0(NZ(KZ − (k − 1)H)) = 0.
(iv) Either

(iv-1) NY/Pc+1 is semistable if s > c(gY − 1) and is stable if s = c(gY − 1), or

(iv-2) H0(NY (KY +D − (k − 1)H)) = 0.
(v) (c+ 2)(gZ − 1)− [c(k − 2)− 2]dZ + s = 0.

(vi) (c+ 2)(gY − 1)− [c(k − 2)− 2]dY + (c+ 1)s = 0.
(vii) s ≥ min{c(gZ − 1), c(gY − 1)}.

Let X ′ = Y ∪ Z and assume that it is smoothable in Pc+1. Then a general smoothing X ⊂ Pc+1 of X ′

is such that degX = dY + dZ , g(X) = gY + gZ + s− 1 and N∗X/Pc+1(k) is Ulrich.

Proof. It follows by (v) and (vi) that

(8.2) χ(NZ(KZ − (k − 1)H)) = χ(NY (KY +D − (k − 1)H)) = −s.

Also (vii) is equivalent to

µ(NZ(KZ − (k − 1)H)) ≤ 0, µ(NY (KY +D − (k − 1)H)) ≤ 0.

Now, it follows by (iii), in either case, that

(8.3) H0(NZ(KZ − (k − 1)H)) = 0.

Next, we prove that under hypothesis (iv) we have that H0(NY (KY + D − (k − 1)H)) = 0. In fact,
assume (iv-1). Then, either s > c(gY −1), hence µ(NY (KY +D− (k−1)H)) < 0 and NY is semistable,
or, by (vii), s = c(gY − 1) and NY is stable. In both cases it follows that

(8.4) H0(NY (KY +D − (k − 1)H)) = 0.

Hence (8.3), (8.4) and (8.2) imply that

(8.5) h1(NZ(KZ − (k − 1)H)) = −χ(NZ(KZ − (k − 1)H)) = s

and

(8.6) h1(NY (KY +D − (k − 1)H)) = −χ(NY (KY +D − (k − 1)H)) = s.

In order to prove that N∗X(k) is Ulrich, observe that (v) and (vi) imply that χ(N∗X(k − 1)) = 0.
Therefore it will suffice to prove that H0(N∗X(k−1)) = 0, or, by duality, that H1(NX⊗ωX(−k+1)) = 0.
This in turn will follow, by semicontinuity, if we prove that

(8.7) H1(NX′ ⊗ ωX′(−k + 1)) = 0.

Since ωX′ |Y ∼= ωY (D) and ωX′ |Z ∼= ωZ(D), to show (8.7), we will use the exact sequence
(8.8)
0→ NX′⊗ωX′(−k+1)→ NX′ |Y (KY +D−(k−1)H)⊕NX′ |Z (KZ+D−(k−1)H)→ NX′ |D⊗ωX′(−k+1)→ 0

and prove that

(8.9) H1(NX′ |Y (KY +D − (k − 1)H)) = 0

and

(8.10) H1(NX′ |Z (KZ − (k − 1)H)) = 0.

In fact, (8.10) implies that H1(NX′ |Z (KZ +D − (k − 1)H)) = 0 and that the restriction map

H0(NX′ |Z (KZ +D − (k − 1)H))→ H0(NX′ |D ⊗ ωX′(−k + 1))

is surjective. But then (8.8) and (8.9) imply (8.7).
Thus it remains to prove (8.9) and (8.10).
To this end, observe that, since Y and Z are transversal, the inclusion TZ → TPc+1 induces a non-zero

morphism TZ → NY , hence a zero-dimensional subscheme ∆Z ⊂ P(NY ), which is mapped injectively
on Y . Now (i) and (ii) imply that ∆Z is a general finite subset of P(NY ). Next, Lemma 8.4(iii) (see
also [HH, Cor. 3.2]) and the exact sequence

0→ NY → NX′ |Y → T 1
X′ → 0
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give that N∗X′ |Y
∼= elm−∆Z

N∗Y and therefore Lemma 8.4(i) implies that

(8.11) N∗X′ |Y ((k − 1)H −D) ∼= (elm−∆Z
N∗Y )((k − 1)H −D) ∼= elm−∆Z

(N∗Y ((k − 1)H −D)).

On the other hand, since ∆Z is general, we have by Lemma 8.4(ii) and (8.6) that

h1(NX′ |Y (KY +D − (k − 1)H)) = h0(N∗X′ |Y ((k − 1)H −D)) = h0(N∗Y ((k − 1)H −D))− s =

= h1(NY (KY +D − (k − 1)H))− s = 0

showing (8.9). Similarly, if ∆Y ⊂ P(NZ) is the finite set defined by Y , (i) and (ii) imply that ∆Y is a
general finite subset of P(NZ). As above

N∗X′ |Z ((k − 1)H) ∼= elm−∆Y
(N∗Z((k − 1)H))

and again Lemma 8.4(ii) and (8.5) give that

h1(NX′ |Z (KZ − (k − 1)H)) = h1(NZ(KZ − (k − 1)H))− s = 0

showing (8.10). This concludes the proof. �

In order to find curves passing through general points with general tangent lines, we borrow an
argument of Kleppe.

Lemma 8.6. Let P1, . . . , Ps ∈ Pc+1 be general points and, for each i ∈ {1, . . . , s}, let Li be a line in
Pc+1, general among the ones passing through Pi. Let a ≥ 1 be such that

(8.12) (c+ 2)a+ c− 2− 2cs ≥ 0.

Then there exists a rational curve Γ ⊂ Pc+1 of degree a such that Pi ∈ Γ and TPiΓ = Li, for all
1 ≤ i ≤ s.

Proof. It follows by [S, Prop. 2] (or by [ALY, Cor. 1.4]) and by (8.12), that the variety of rational curves

of degree a in Pc+1 passing through P1, . . . , Ps, is non-empty. Let ε : P̃c+1 → Pc+1 be the blow-up of
Pc+1 along the points Pi, with exceptional divisors Ei, 1 ≤ i ≤ s. For any rational curve of degree a in
Pc+1 passing through P1, . . . , Ps, the strict transform is represented by a point of the Hilbert scheme H
of 1-dimensional closed subschemes of P̃c+1 with Hilbert polynomial q(t) = (ba− s)t+ 1 (with respect

to ε∗OPc+1(b)− E1 − . . .− Es, b� 0). Let K be the Hilbert scheme of s-tuples of points in P̃c+1, that
is with Hilbert polynomial p(t) = s.

Consider the flag Hilbert scheme D(p, q) of Hilbert polynomials p, q, that is representing pairs

([Q1, . . . , Qs], [Γ̃]) ∈ K ×H such that Qi ∈ Γ̃, 1 ≤ i ≤ s and let

f : D(p, q)→ K
be the forgetful morphism. By Kleppe’s theorem (see [P, Thm. 1.5 and Cor. 1.6]), given a point

([Q1, . . . , Qs], [Γ̃]) ∈ D(p, q), if [Γ̃] is a smooth point of H and if the map

r : H0(N
Γ̃/P̃c+1)→ H0(N

Γ̃/P̃c+1 |{Q1,...,Qs}
)

is surjective, then Imf contains an open neighborhood of (Q1, . . . , Qs).

Let Γ be a rational curve of degree a in Pc+1 passing through P1, . . . , Ps, let Γ̃ ⊂ P̃c+1 be the strict

transform of Γ and let Qi ∈ Ei ∩ Γ̃, 1 ≤ i ≤ s, be the points corresponding to TPiΓ. Let δ =
⌊

2a−2
c

⌋
and

let ρ = 2a− 2− cδ. Then

NΓ/Pc+1
∼= OP1(a+ δ)⊕(c−ρ) ⊕OP1(a+ δ + 1)⊕ρ

by [S, Prop. 2]. Also, [ACPS, Lemma 2.1] (see also [CS, Rmk. 4.2.7]) implies that

(8.13) N
Γ̃/P̃c+1

∼= NΓ/Pc+1(−s) ∼= OP1(a+ δ − s)⊕(c−ρ) ⊕OP1(a+ δ + 1− s)⊕ρ.

But then (8.12) and (8.13) give that

H1(N
Γ̃/P̃c+1(−Q1 − . . .−Qs)) = H1(OP1(a+ δ − 2s)⊕(c−ρ) ⊕OP1(a+ δ + 1− 2s)⊕ρ) = 0

Hence r is surjective and H1(N
Γ̃/P̃c+1) = 0, so that [Γ̃] is a smooth point of H and Imf contains an

open neighborhood of (Q1, . . . , Qs). Therefore we can find a curve Γ̃′ ⊂ P̃c+1, represented by a point
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of H, passing through s general points Q′i ∈ Ei, 1 ≤ i ≤ s. Finally Γ′ := f(Γ̃′) is a rational curve of
degree a in Pc+1 such that Pi ∈ Γ′ and with tangent lines at the Pi’s that are general lines among the
ones passing through the Pi’s, corresponding to the s general points Q′i ∈ Ei, 1 ≤ i ≤ s. �

Remark 8.7. Let Γ ⊂ Pc+1 be a general nonspecial curve of degree a and genus γ, let P1, . . . , Ps ∈ Γ be
general points and assume that (c+ 2)a− (c− 2)(γ − 1)− 2cs ≥ 0 and that

(8.14) H1(NΓ/Pc+1(−2P1 − . . .− 2Ps)) = 0.

Then, with the same proof of Lemma 8.6, we can find a nonspecial curve of degree a and genus γ,
passing through s general points with s general tangent lines at these points. We do not know if (8.14)
holds, but if so, most likely several more examples of curves having N∗X(k) Ulrich could be found.

We will now apply Lemma 8.5 to general nonspecial curves. We first prove some lemmas that allow
the construction.

As in [HH] (but we allow disconnectedness) we use the following

Definition 8.8. A stick figure is a reduced nodal one-dimensional closed subscheme in Pr, whose
irreducible components are lines.

We will use the next lemma, often for stick figures.

Lemma 8.9. Let Γ,Γ′ ⊂ Pr be two reduced nodal one-dimensional closed subschemes without common
components and such that Γ ∪ Γ′ is nodal and:

(i) Γ is nonspecial.
(ii) H1(OΓ′(1)(−Γ ∩ Γ′)) = 0.

Then also Γ ∪ Γ′ is nonspecial.

Proof. The statement follows by (i), (ii) and the exact sequence

0→ OΓ′(1)(−Γ ∩ Γ′)→ OΓ∪Γ′(1)→ OΓ(1)→ 0.

�

We will now prove four lemmas, all in the following setting: let

P1, · · ·P2b ∈ P3 be general points.

For each i ∈ {1, . . . , 2b}, let Li be a line in P3, general among the ones passing through Pi.

Lemma 8.10. If b ≥ 2, there are lines M1, . . . ,Mb and a connected nonspecial stick figure

Zb = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb

having Pi’s as smooth points and such that pa(Zb) = b+ 1.

Proof. The lemma will follow by Lemma 8.9 and the following

Claim 8.11. There is a nonspecial stick figure M1 ∪ . . . ∪Mb such that Zb is a connected stick figure,
pa(Zb) = b+ 1, the Pi’s are smooth points of Zb and

(8.15) H1(OL1∪...∪L2b
(1)(−Bb)) = 0, where Bb = (L1 ∪ . . . ∪ L2b) ∩ (M1 ∪ . . . ∪Mb).

We now prove Claim 8.11 by induction on b.
If b = 2, let Q be the smooth quadric containing L1, L2 and L3. Then L4 meets Q at the two points

R1, R2. Take two lines M1,M2 of the other ruling of Q (with respect to L1) passing through R1 and
R2 respectively and let (see Figure 1)

Z2 = L1 ∪ . . . ∪ L4 ∪M1 ∪M2.

Then the Pi’s are smooth points of Z2 and pa(Z2) = 3. Since M1 and M2 are disjoint, we have that
M1 ∪M2 is nonspecial. Moreover

(8.16) H1(OL1∪L2∪L3∪L4(1)(−B2)) = H1(OP1(−1)⊕4) = 0

and this gives the case b = 2.
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M6
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R1

L4

Q

Figure 1. Left: pa(Z2) = 3, d(Z2) = 6. Right: pa(Y2) = 3, d(Y2) = 10

Now, if b ≥ 3, by induction we have a nonspecial stick figure M1 ∪ . . . ∪Mb−1 such that Zb−1 is a
connected stick figure, pa(Zb−1) = b, the Pi’s are smooth points of Zb−1 and

(8.17) H1(OL1∪...∪L2b−2
(1)(−Bb−1)) = 0.

In particular, deg(Bb−1|Li
) ≤ 2 for all 1 ≤ i ≤ 2b − 2. Let Q be the smooth quadric containing

Mb−1, L2b−1 and L2b and let R0 be the point of intersection of Q with Mb−2, not lying on Mb−1.
Let Mb be the ruling of Q of the other kind passing through R0 (with respect to Mb−1) intersecting
Mb−1, L2b−1, L2b at R1, R2, R3 respectively. Then M1 ∪ . . . ∪Mb is a nonspecial stick figure by Lemma
8.9. Moreover, if

Zb = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb

then Zb has as nodes the nodes of Zb−1 and R0, R1, R2, R3, whence pa(Zb) = b+ 1. Now we note that
Bb|Li

= Bb−1|Li
for 1 ≤ i ≤ 2b− 2, Bb|L2b−1

= R2 and Bb|L2b
= R3. Hence (8.17) gives (8.15). �

Lemma 8.12. If b ≥ 2, there are lines M1, . . . ,Mb+4 and a connected nonspecial stick figure

Yb = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb+4

having Pi’s as smooth points and such that pa(Yb) = 3.

Proof. The lemma will follow by Lemma 8.9 and the following

Claim 8.13. There is a nonspecial stick figure M1∪ . . .∪Mb+4 such that Yb is a connected stick figure,
pa(Yb) = 3, the Pi’s are smooth points of Yb and

(8.18) H1(OL1∪...∪L2b
(1)(−Bb)) = 0, where Bb = (L1 ∪ . . . ∪ L2b) ∩ (M1 ∪ . . . ∪Mb+4).

We now prove Claim 8.13 by induction on b.
If b = 2, let Z2 = L1 ∪ . . . ∪ L4 ∪M1 ∪M2 be the stick figure constructed in Lemma 8.10 for b = 2

and let B′2 = (L1 ∪ . . . ∪ L4) ∩ (M1 ∪M2). For 3 ≤ i ≤ 6, let Mi be a general line meeting only Mi−1

in one point and set (see Figure 1)

Y2 = L1 ∪ . . . L4 ∪M1 ∪ . . . ∪M6.

Then M1 ∪ . . . ∪M6 is a nonspecial stick figure by Lemma 8.9. Moreover, pa(Y2) = pa(Z2) = 3 and
B2 = B′2, hence (8.18) holds by (8.15).

Now, if b ≥ 3, by induction we have a nonspecial stick figure M1 ∪ . . . ∪Mb+3 such that Yb−1 is a
connected stick figure, pa(Yb−1) = 3, the Pi’s are smooth points of Yb−1 and

(8.19) H1(OL1∪...∪L2b−2
(1)(−Bb−1)) = 0.

In particular, deg(Bb−1|Li
) ≤ 2 for all 1 ≤ i ≤ 2b−2. Let Q be a quadric containing Mb+3, L2b−1, L2b and

let Mb+4 be a general ruling of Q of the other kind (with respect to Mb+3) intersecting Mb+3, L2b−1, L2b

at R1, R2, R3 respectively. Then M1 ∪ . . .∪Mb+4 is a nonspecial stick figure by Lemma 8.9. Moreover,
if

Yb = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb+4
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Figure 2. Left: pa(Y
′

2) = 2, d(Y ′2) = 8. Right: pa(Y
′′

2 ) = 1, d(Y ′′2 ) = 6.

then Yb has as nodes the nodes of Yb−1 and R1, R2, R3, whence pa(Yb) = 3. Now we note that Bb|Li
=

Bb−1|Li
for 1 ≤ i ≤ 2b− 2, Bb|L2b−1

= R2 and Bb|L2b
= R3. Hence (8.19) gives (8.18). �

Lemma 8.14. If b ≥ 2, there are disjoint lines M1, . . . ,Mb+2 and a connected nonspecial stick figure

Y ′b = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb+2

having Pi’s as smooth points and such that pa(Y
′
b ) = 2.

Proof. We prove the lemma by induction on b.
If b = 2, let T be a plane containing L1. Let R2 (respectively R3) be the point of intersection of

L2 (respectively L3) with T . Let M1 be a line joining R2 and R3, intersecting L1 at R1. Further, let
M2,M3,M4 be three general 2-secant lines to L1 ∪ L4 and set (see Figure 2)

Y ′2 = L1 ∪ . . . L4 ∪M1 ∪ . . . ∪M4

so that pa(Y
′

2) = 2. Now L1 ∪ M1 is a conic, hence H1(OL1∪M1(1)) = 0 and then also
H1(OL1∪L4∪M1(1)) = H1(OL1∪M1(1) ⊕ OL4(1)) = 0. Moreover, setting B = (L2 ∪ L3 ∪ M2 ∪
M3 ∪ M4) ∩ (L1 ∪ L4 ∪ M1), we see that OL2∪L3∪M2∪M3∪M4(1)(−B) ∼= O⊕2

P1 ⊕ OP1(−1)⊕3, hence

H1(OL2∪L3∪M2∪M3∪M4(1)(−B)) = 0. Therefore Y ′2 is nonspecial by Lemma 8.9 and this gives the
case b = 2.

Now, if b ≥ 3, by induction there are disjoint lines M1, . . . ,Mb+1 and a connected nonspecial stick
figure

Y ′b−1 = L1 ∪ . . . ∪ L2b−2 ∪M1 ∪ . . . ∪Mb+1

having Pi’s as smooth points and such that pa(Y
′
b−1) = 2. Let Q be the quadric containing L2b−2, L2b−1

and L2b. Let Mb+2 be a general ruling of Q of the other kind (with respect to L2b−2). Now, if

Y ′b = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb+2

we have that pa(Y
′
b ) = 2. Moreover, setting B′ = (L2b−1 ∪ L2b ∪ Mb+2) ∩ Y ′b−1, we see that

OL2b−1∪L2b∪Mb+2
(1)(−B′) ∼= OP1 ⊕OP1(1)⊕2, hence H1(OL2b−1∪L2b∪Mb+2

(1)(−B′)) = 0. Therefore Y ′b is
nonspecial by Lemma 8.9. �

Lemma 8.15. If b ≥ 2, there are lines M1, . . . ,Mb and a connected nonspecial stick figure

Y ′′b = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb

having Pi’s as smooth points and such that pa(Y
′′
b ) = 1.

Proof. The lemma will follow by Lemma 8.9 and the following

Claim 8.16. There is a nonspecial stick figure M1 ∪ . . . ∪Mb such that Y ′′b is a connected stick figure,
pa(Y

′′
b ) = 1, the Pi’s are smooth points of Y ′′b and

(8.20) H1(OL1∪...∪L2b
(1)(−Bb)) = 0, deg(Bb|L2b

) = 1 where Bb = (L1 ∪ . . . ∪ L2b) ∩ (M1 ∪ . . . ∪Mb).
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We now prove Claim 8.16 by induction on b.
If b = 2, pick a general plane T containing L1. Then T meets L2 in a point R2 and L3 in a point

R3. Let M1 be the line joining R2 and R3. Then M1 meets L1 in one point. Now take a general plane
T ′ containing L4. Then T ′ meets M1 and L3 in two distinct points and if M2 is the line joining them,
then (see Figure 2)

Y ′′2 = L1 ∪ L2 ∪ L3 ∪ L4 ∪M1 ∪M2

is such that pa(Y
′′

2 ) = 1. Now M1 ∪M2 is a conic, hence is nonspecial and nodal. Moreover

OL1∪L2∪L3∪L4(1)(−B2) ∼= O⊕3
P1 ⊕OP1(−1)

hence (8.20) holds and this gives the case b = 2.
Now, if b ≥ 3, by induction we have a nonspecial stick figure M1 ∪ . . . ∪Mb−1 such that Y ′′b−1 is a

connected stick figure, pa(Y
′′
b−1) = 1, the Pi’s are smooth points of Y ′′b−1 and

(8.21) H1(OL1∪...∪L2b−2
(1)(−Bb−1)) = 0 and deg(Bb−1|L2b−2

) = 1.

In particular, deg(Bb−1|Li
) ≤ 2 for all 1 ≤ i ≤ 2b − 3. Let Q be the quadric containing

L2b−2, L2b−1, L2b and let Mb be a general ruling of Q of the other kind (with respect to L2b−2), in-
tersecting L2b−2, L2b−1, L2b at R1, R2, R3, respectively. Then M1 ∪ . . . ∪Mb is a nonspecial stick figure
and if

Y ′′b = L1 ∪ . . . ∪ L2b ∪M1 ∪ . . . ∪Mb

then Y ′′b has as nodes the nodes of Y ′′b−1 and R1, R2, R3, whence pa(Y
′′
b ) = 1. Now we note that

Bb|Li
= Bb−1|Li

for 1 ≤ i ≤ 2b − 3, deg(Bb|L2b−2
) = 2, Bb|L2b−1

= R2 and Bb|L2b
= R3. Hence (8.21)

gives (8.20). �

Next, we prove Theorem 3. We will often use the fact, proved for example in [HH, Cor. 1.2], that a
nonspecial nodal reduced one-dimensional closed subscheme in Pc+1 is smoothable.

Proof of Theorem 3(i). From d = 2g − 2 we deduce that g ≥ 2, hence, since X is nonspecial, g − 1 =
h0(OC(1)) ≥ 3. Thus g ≥ 4 and if equality holds, then C is a plane curve of degree 6, a contradiction.
Therefore g ≥ 5.

Let P1, · · ·P4 ∈ P3 be general points and, for each i ∈ {1, . . . , 4}, let Li, L
′
i be lines in P3, general

among the ones passing through Pi.
We first consider the case g = 6.

Claim 8.17. There are a smooth rational quartic Y ⊂ P3, a smooth nonspecial curve Z ⊂ P3 of degree
6 and genus 3, such that:

(i) D = Y ∩ Z is a general effective divisor of degree 4 on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ 4.
(iii) H0(NZ(KZ − 3H)) = H0(NY (KY +D − 3H)) = 0.
(iv) X ′ = Y ∪ Z is nonspecial.

Proof of Theorem 3(i). The existence of Y passing through P1, · · ·P4 and satisfying (ii) is assured by
Lemma 8.6. As for (iii), observe that NY

∼= OP1(7)⊕2 by [S, Prop. 2], hence (iii) holds.
Next, to find Z, we argue by degeneration. Let Z ′ = Z2 be the nonspecial stick figure of degree

6 and arithmetic genus 3 constructed in Claim 8.11 (now using L′1, . . . , L
′
4). Then Z ′ is smoothable,

Y ∩ Z ′ = D and pa(Y ∪ Z ′) = 6. Hence any smoothing Y ∪ Z obtained by smoothing Z ′ so that it
still passes through 4 general points, must have pa(Y ∪ Z) = 6. That is, again Y ∩ Z = D, meeting
transversally and with two different sets of tangent lines at the 4 points that are general lines among
the ones passing through these points. Next, X ′ is nonspecial by Lemma 8.9, since H1(OZ(1)) = 0 and
H1(OY (1)(−D)) = H1(OP1) = 0. Thus it remains to check (iii) for a general nonspecial curve Z ⊂ P3

of degree 6 and genus 3. To this end, we specialize Z to a curve Z ′′ of type (2, 4) on a smooth quadric
Q ⊂ P3. Observe that the exact sequence

0→ OQ(−1,−3)→ OQ(1)→ OZ′′(1)→ 0

shows that H1(OZ′′(1)) = 0, hence H0(OZ′′(KZ′′−H)) = 0 by Serre’s duality. Also, the exact sequence

0→ OQ(−3,−1)→ OQ(−1, 3)→ OZ′′(Z ′′ +KZ′′ − 3H)→ 0
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shows that H0(OZ′′(Z ′′ +KZ′′ − 3H)) = 0. Therefore the exact sequence

0→ OZ′′(Z ′′ +KZ′′ − 3H)→ NZ′′(KZ′′ − 3H)→ OZ′′(KZ′′ −H)→ 0

implies that H0(NZ′′(KZ′′ − 3H)) = 0. �

Next assume that g ≥ 7. Set g = 3b + ε, with 1 ≤ ε ≤ 3 and let s = 2b. Let P1, . . . , Ps ∈ P3

be general points and set D = {P1, . . . , Ps}. For each i ∈ {1, . . . , s}, let Li, L
′
i be lines in P3, general

among the ones passing through Pi.
We first construct the appropriate degenerations according to ε.

Claim 8.18. If ε = 3 there are a smooth curve Y ⊂ P3 of degree g + 1 and genus 3, a smooth curve
Z ⊂ P3 of degree g − 3 and genus g

3 , such that:

(i) D = Y ∩ Z is a general effective divisor of degree s on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ s.

(iii) NY and NZ are stable.
(iv) X ′ = Y ∪ Z is nonspecial.

Proof. It follows by [ALY, Thm. 1.3] that there are a general nonspecial curve Y ⊂ P3 of degree g + 1
and genus 3, and a general nonspecial curve Z ⊂ P3 of degree g − 3 and genus g

3 , both containing D

and satisfying H1(NY (−D)) = H1(NZ(−D)) = 0. Moreover, by Kleppe’s theorem (see for example [P,
Thm. 1.5] or [ALY, Thm. 1.1]), the generality assumptions give that D is a general effective divisor on
both.

To show that these curves meet only along D with the assigned tangent lines, we will argue by
degeneration.

Let Y ′ = Yb be the stick figure in Lemma 8.12 and let Z ′ = Zb be the stick figure in Lemma 8.10.
Since they are both nonspecial, they are smoothable. Observe that Y ′ ∩ Z ′ = D and pa(Y

′ ∪ Z ′) = g.
Hence any smoothing Y ∪Z obtained by smoothing Y ′ and Z ′ so that they still pass through 2b general
points, must have pa(Y ∪Z) = g. That is, again Y ∩Z = D, meeting transversally and with two different
sets of tangent lines at the 2b points that are general lines passing through these points. Next, NY and
NZ are stable by [CLV, Main Thm.]. Finally, X ′ is nonspecial by Lemma 8.9, since H1(OZ(1)) = 0
and H1(OY (1)(−D)) = 0, since dY − s > 2gY − 2. �

Claim 8.19. If ε = 1 there are a smooth curve Y ⊂ P3 of degree g − 1 and genus 1, a smooth curve
Z ⊂ P3 of degree g − 1 and genus g+2

3 , such that:

(i) D = Y ∩ Z is a general effective divisor of degree s on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ s.

(iii) NY is semistable and NZ is stable.
(iv) X ′ = Y ∪ Z is nonspecial.

Proof. The proof is the same as the one of Claim 8.18 except that we now choose Y ′ = Y ′′b be the stick
figure in Lemma 8.15. �

Claim 8.20. If ε = 2 there are a smooth curve Y ⊂ P3 of degree g and genus 2, a smooth curve Z ⊂ P3

of degree g − 2 and genus g+1
3 , such that:

(i) D = Y ∩ Z is a general effective divisor of degree s on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ s.

(iii) NY and NZ are stable.
(iv) X ′ = Y ∪ Z is nonspecial.

Proof. The proof is the same as the one of Claim 8.18 except that we now choose Y ′ = Y ′b be the stick
figure in Lemma 8.14. �

We now conclude the proof of Theorem 3(i).
For the cases g = 5, 6 we consider P1, · · ·P4 ∈ P3 general points and, for each i ∈ {1, . . . , 4}, Li, L′i

be lines in P3, general among the ones passing through Pi.
First, we deal with the case g = 5.
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Let Z ⊂ P3 be the curve of degree 6 and genus 3 constructed in Claim 8.17. Let Y1 (respectively Y2)
be the line joining P1 and P2 (resp. P3 and P4). Since Z is nonspecial, it follows by Lemma 8.9 that
also

X ′ = Z ∪ Y1 ∪ Y2

is nonspecial. Moreover, for j = 1, 2, setting D1 = P1 + P2, D2 = P3 + P4, we have that

(8.22) h1(NYj (KYj +Dj − 3H)) = h1(OP1(−2)⊕2) = 2.

We now argue as in the proof of Lemma 8.5.
Since TPiZ = L′i, 1 ≤ i ≤ 4, the finite set ∆j ⊂ P(NYj ), j = 1, 2, defined by Z, is just a general finite

subset of P(NYj ). Now, as in the proof of Lemma 8.5, we have that

N∗X′ |Yj
(3H −Dj) ∼= elm−∆j

(N∗Yj (3H −Dj))

and then, since ∆j is general, we have by Lemma 8.4(ii) and (8.22) that
(8.23)
h1(NX′ |Yj

(KYj+Dj−3H)) = h0(N∗X′ |Yj
(3H−Dj)) = h0(N∗Yj (3H−Dj))−2 = h1(NYj (KYj+Dj−3H))−2 = 0.

Next, we show that

(8.24) h1(NX′ |Z (KZ − 3H)) = 0.

To prove this, we choose a general quadric Q ⊂ P3 passing through P1, . . . , P4 and a general curve Z ′′

of type (2, 4) on Q still passing through P1, . . . , P4. Then we specialize X ′ to

X ′′ = Z ′′ ∪ Y ′1 ∪ Y ′2 .

where Y ′1 (respectively Y ′2) are the line joining P1 and P2 (resp.P3 and P4). Now (8.24) will follow by
semicontinuity from

(8.25) h1(NX′′ |Z′′ (KZ′′ − 3H)) = 0.

We already showed in the proof of Claim 8.17 that H0(NZ′′(KZ′′ − 3H)) = 0, hence

(8.26) h1(NZ′′(KZ′′ − 3H)) = 4.

On the other hand, letting ∆′′ ⊂ P(NZ′′) be the finite set defined by Y ′1 ∪ Y ′2 , as in the proof of Lemma
8.5, we have that

(8.27) N∗X′′ |Z′′
(3H) ∼= elm−∆′′(N

∗
Z′′(3H)).

We now observe that ∆′′ imposes independent conditions to OP(N∗
Z′′ (3H))(1). In fact, since Z ′′ lies on a

quadric, we have an inclusion H0(H) ⊆ H0(N∗Z′′(3H)) ∼= H0(OP(N∗
Z′′ (3H))(1)). If π : P(N∗Z′′(3H))→ Z ′′

is the projection, then π(∆′′) = {P1, . . . , P4}. Hence, for any j ∈ {1, . . . , 4}, we can find a section
σj ∈ H0(H) ⊆ H0(N∗Z′′(3H)) such that σj(Pj) 6= 0, σj(Pi) = 0 for i ∈ {1, . . . , 4}, i 6= j. Therefore
the sections π∗σj ∈ H0(OP(N∗

Z′′ (3H))(1)), 1 ≤ j ≤ 4 show that ∆′′ imposes independent conditions to

OP(N∗
Z′′ (3H))(1). But then, using (8.27) and (8.26), we have

h1(NX′′ |Z′′ (KZ′′ − 3H)) = h0(N∗X′′ |Z′′
(3H)) = H0(elm−∆′′(N

∗
Z′′(3H))) = h0(N∗Z′′(3H))− 4 =

= h1(NZ′′(KZ′′ − 3H))− 4 = 0.

This proves (8.25), hence (8.24). Now, exactly as in the proof of Lemma 8.5 we conclude (with the
analogue of sequence (8.8)), from (8.23) and (8.24), that H1(NX′ ⊗ ωX′(−3)) = 0. Then a general
smoothing X ⊂ P3 of X ′ is such that degX = 8, g(X) = 5 and N∗X(4) is Ulrich. Finally X is not
subcanonical, for otherwise we would have that KC = H, contradicting the fact that X is nonspecial.
This concludes the proof in the case g = 5.

When g = 6, in the case of Claim 8.17, it is easily verified that the conditions (i)-(vii) (using (iii-2)
and (iv-2)) of Lemma 8.5 are satisfied with k = 4, s = 4, c = 2.

Next, for the case g ≥ 7, we set g = 3b+ε, with 1 ≤ ε ≤ 3 and let s = 2b. We consider P1, . . . , Ps ∈ P3

general points and, for each i ∈ {1, . . . , s}, we let Li, L
′
i be lines in P3, general among the ones passing

through Pi.
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In all three cases of Claims 8.18, 8.19 and 8.20, it is easily verified that the conditions (i)-(vii) (using
(iii-1) and (iv-1)) of Lemma 8.5 are satisfied with k = 4, s = 2b, c = 2.

Moreover, X ′ = Y ∪Z a nodal nonspecial curve with degX ′ = 2g − 2 and pa(X
′) = g. In particular

X ′ is smoothable in P3. Then a general smoothing X ⊂ P3 of X ′ is such that degX = 2g− 2, g(X) = g
and N∗X(4) is Ulrich by Lemma 8.5. Finally X is not subcanonical, for otherwise we would have that
KC = H, contradicting the fact that X is nonspecial. �

We will also use the following

Remark 8.21. Let L1, L2, L3 be three disjoint lines in P4. Then there is a trisecant line L to L1∪L2∪L3.

Proof. Observe that H = 〈L1, L2〉 is a hyperplane in P4, hence H meets L3 in a point P3. Then
{P3} ∪ L1 ∪ L2 ⊂ H ∼= P3 and if M = 〈P3, L1〉, then M is a plane in H, meeting L2 in a point P2.
Therefore the line L joining P2 and P3 lies in M , hence meets L1. �

Finally, we prove Theorem 3(ii).

Proof of Theorem 3(ii). Write g = 29 + 4b+ ε with b ≥ 0, 0 ≤ ε ≤ 3 and set

s = 22 + 3b+ ε.

Let P1, . . . , Ps ∈ P4 be general points and set D = {P1, . . . , Ps}. For each i ∈ {1, . . . , s}, let Li, L
′
i be

lines in P4, general among the ones passing through Pi.

Claim 8.22. There is a smooth rational curve Y ⊂ P4 of degree 83 + 12b + 4ε and a smooth curve
Z ⊂ P4 of degree 57 + 8b+ ε and genus 8 + b, such that:

(i) D = Y ∩ Z is a general effective divisor of degree s on both.
(ii) TPiY = Li, TPiZ = L′i, 1 ≤ i ≤ s.

(iii) NZ is stable.
(iv) X ′ = Y ∪ Z is nonspecial.

Proof. By Lemma 8.6 we can find a smooth rational curve Y ⊂ P4 of degree 83 + 12b + 4ε passing
through P1, . . . , Ps with tangent lines at the Pi’s that are general lines among the ones passing through
these points.

Next, to find Z, we argue by degeneration, considering different cases according to ε.

Case 0: ε = 0. Fix i with 0 ≤ i ≤ 6 + b. Let M ′2i+1 be a trisecant line to L′3i+1 ∪ L′3i+2 ∪ L′3i+3, that
exists by Remark 8.21. Similarly let M ′2i+2 be a trisecant line to L′3i+2 ∪ L′3i+3 ∪ L′3i+4. Let M ′15+2b be
a general chord of L′1 ∪ L′22+3b. Set B′ = (L′1 ∪ . . . ∪ L′22+3b) ∩ (M ′1 ∪ . . . ∪M ′15+2b) and observe that

OL′1∪...∪L′22+3b
(1)(−B′) ∼= OP1(−1)⊕(22+3b). Thus, Lemma 8.9 gives that L′1 ∪ . . . ∪ L′22+3b ∪M ′1 ∪ . . . ∪

M ′15+2b is nonspecial. We now take a tree of lines M ′16+2b ∪ . . . ∪M ′35+5b such that M ′i intersects M ′i−1
at one point, for 16 + 2b ≤ i ≤ 35 + 5b. Set

Z ′ = L′1 ∪ . . . ∪ L′22+3b ∪M ′1 ∪ . . . ∪M ′35+5b

which is a connected stick figure of degree 57 + 8b and genus 8 + b, and it is nonspecial by Lemma 8.9.

Case 1: ε = 1. Fix i with 0 ≤ i ≤ 6 + b. Let M ′2i+1 be a trisecant line to L′3i+1 ∪ L′3i+2 ∪ L′3i+3, that
exists by Remark 8.21. Similarly let M ′2i+2 be a trisecant line to L′3i+2 ∪ L′3i+3 ∪ L′3i+4. Let M ′15+2b

be a trisecant line of L′1 ∪ L′22+3b ∪ L′23+3b. Set B′ = (L′1 ∪ . . . ∪ L′23+3b) ∩ (M ′1 ∪ . . . ∪M ′15+2b) and

observe that OL′1∪...∪L′23+3b
(1)(−B′) ∼= OP1 ⊕OP1(−1)⊕(22+3b). Thus, Lemma 8.9 gives that L′1 ∪ . . . ∪

L′23+3b ∪M ′1 ∪ . . . ∪M ′15+2b is nonspecial. We now take a tree of lines M ′16+2b ∪ . . . ∪M ′35+5b such that
M ′i intersects M ′i−1 at one point, for 16 + 2b ≤ i ≤ 35 + 5b. Set

Z ′ = L′1 ∪ . . . ∪ L′23+3b ∪M ′1 ∪ . . . ∪M ′35+5b

which is a connected stick figure of degree 58 + 8b and genus 8 + b, and it is nonspecial by Lemma 8.9.

Case 2: ε = 2. For i with 0 ≤ i ≤ 7+ b, let M ′2i+1 be a trisecant line to L′3i+1∪L′3i+2∪L′3i+3, that exists
by Remark 8.21. Similarly, for i with 0 ≤ i ≤ 6+b, let M ′2i+2 be a trisecant line to L′3i+2∪L′3i+3∪L′3i+4.
Let M ′16+2b be a general chord of L′23+3b ∪ L′24+3b. Set B′ = (L′1 ∪ . . . ∪ L′24+3b) ∩ (M ′1 ∪ . . . ∪M ′16+2b)

and observe that OL′1∪...∪L′24+3b
(1)(−B′) ∼= OP1 ⊕ OP1(−1)⊕(23+3b). Thus, Lemma 8.9 gives that L′1 ∪
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. . . ∪ L′24+3b ∪M ′1 ∪ . . . ∪M ′16+2b is nonspecial. We now take a tree of lines M ′17+2b ∪ . . . ∪M ′35+5b such
that M ′i intersects M ′i−1 at one point, for 17 + 2b ≤ i ≤ 35 + 5b. Set

Z ′ = L′1 ∪ . . . ∪ L′24+3b ∪M ′1 ∪ . . . ∪M ′35+5b

which is a connected stick figure of degree 59 + 8b and genus 8 + b, and it is nonspecial by Lemma 8.9.

Case 3: ε = 3. Fix i with 0 ≤ i ≤ 7 + b. Let M ′2i+1 be a trisecant line to L′3i+1 ∪ L′3i+2 ∪ L′3i+3,
that exists by Remark 8.21. Similarly let M ′2i+2 be a trisecant line to L′3i+2 ∪ L′3i+3 ∪ L′3i+4. Set B′ =

(L′1∪. . .∪L′25+3b)∩(M ′1∪. . .∪M ′16+2b) and observe thatOL′1∪...∪L′25+3b
(1)(−B′) ∼= O⊕2

P1 ⊕OP1(−1)⊕(23+3b).

Thus, Lemma 8.9 implies that L′1 ∪ . . . ∪ L′25+3b ∪M ′1 ∪ . . . ∪M ′16+2b is nonspecial. We now take a tree
of lines M ′17+2b ∪ . . .∪M ′35+5b such that M ′i intersects M ′i−1 at one point, for 17 + 2b ≤ i ≤ 35 + 5b. Set

Z ′ = L′1 ∪ . . . ∪ L′25+3b ∪M ′1 ∪ . . . ∪M ′35+5b

which is a connected stick figure of degree 60 + 8b and genus 8 + b, and it is nonspecial by Lemma 8.9.
We now resume the proof of Claim 8.22.
Observe that, in all cases, Z ′ is smoothable for being nonspecial, and pa(Y ∪ Z ′) = g. Hence any

smoothing Y ∪ Z obtained by smoothing Z ′ so that it still passes through s general points, must
have pa(Y ∪ Z) = g. That is, again Y ∩ Z = D, meeting transversally and with two different sets
of tangent lines at the s points that are general lines among the ones passing through these points.
Since OY (1)(−D) ∼= OP1(61 + 9b+ 3ε), we have H1(OY (1)(−D)) = 0. Consequently, we see that X ′ is
nonspecial by Lemma 8.9. Finally, the stability of NZ follows from [BR, Thm. 1]. �

We now conclude the proof of Theorem 3(ii).
Let Y and Z be the curves in Claim 8.22. Let c = k = 3 and s = 22 + 3b+ ε, where g = 29 + 4b+ ε.

Note that Y is a general rational curve of degree 83+12b+4ε in P4. Writing 2(83+12b+4ε)−2 = 3δ+ρ,
with 0 ≤ ρ ≤ 2, it follows by [S, Prop. 2] that

NY
∼= OP1(83 + 12b+ 4ε)⊕(3−ρ) ⊕OP1(84 + 12b+ 4ε)⊕ρ.

It is then easily verified that the conditions (i)-(vii) of Lemma 8.5 are satisfied (using (iii-1) and (iv-2)).
Moreover, X ′ = Y ∪Z a nodal nonspecial curve with degX ′ = 5g− 5 and pa(X

′) = g. In particular X ′

is smoothable in P4. Then a general smoothing X ⊂ P4 of X ′ is such that degX = 5g − 5, g(X) = g
and N∗X(3) is Ulrich by Lemma 8.5. Also, clearly, X is not subcanonical. �
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