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Introduction

The question whether homogeneous polynomials can be expressed as a de-
terminant of linear forms is a well-known classical subject, which has been
studied since the middle of 1800 (see Beauville [B1] for more references).
Many cases have already been analysed: Dixon [Di], at the beginning of the
20th century, treated plane curves of any degree; Dickson [D] presented a way
to determine which general homogeneous forms can be expressed as linear
determinants, also producing such a representation for plane curves. A more
contemporary treatment of plane curves appears in Cook and Thomas [CT];
smooth irreducible curves are issued in Vinnikov [V]; plane curves and sur-
faces in P3 are presented in Beauville [B1]; smooth plane quartics are treated
in Plaumann, Sturmfels, Vinzant [PSV].

Before proceeding, let us consider some direct examples. Let K be an
algebraically closed field, and let F (x0, . . . , xN) be a homogeneous polyno-
mial of degree d over K: under which conditions can F be expressed as
the determinant of a d× d matrix L(x0, . . . , xN), whose entries are linear in
x0, . . . , xN? As Vinnikov [V] shows, we can consider at first two basic cases,
that is N = 2 and, respectively, d = 2, 3. As we know, every smooth plane
quadric can be written, by a homogeneous change of coordinates, as

F (x0, x1, x2) = x21 − x0x2,

and one observes that

F (x0, x1, x2) = det

(
x1 x2
x0 x1

)
.

Therefore any smooth plane quadric possesses a unique representation as a
determinant of linear forms. With regard to smooth plane cubics, instead,
they can be written, by a homogeneous change of coordinates, as

F (x0, x1, x2) = x22x0 − x1(x1 + θ1x0)(x1 + θ2x2),
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where θ1, θ2 ∈ K∗ are distinct. One sees that

F (x0, x1, x2) = det

tx0 + x1 dx0 + x2 qx0
0 lx0 + x1 −dx0 + x2
−x0 0 tx0 + x1

 ,

where l ∈ K and t, q, d are determined by l, θ1, θ2. Therefore any smooth
plane cubic possesses infinite representations as a determinant of linear forms.
Another basic case is, for instance, quadrics in four variables (N = 3 and
d = 2). The general quadratic forms in four variables can be transformed,
by a homogeneous change of coordinates, into

F (x0, x1, x2, x3) = x0x1 − x2x3.

Clearly, we have

F (x0, x1, x2, x3) = det

(
x0 x2
x3 x1

)
,

and therefore also every quadric surface in P3 can be expresses as a linear
determinant.

A question arises: how does the above classical problem relate to the
existence of Ulrich vector bundles, that is the main subject of this text?

We start by giving one of the known characterizations of such sheaves:

Definition 0.1. Let X be a smooth variety of dimension n, and let L be a
very ample line bundle on X. Let us consider a vector bundle E on X such
that, for all 1 ≤ p ≤ n, E ⊗ L⊗(−p) has vanishing cohomology. Such E is
said to be an Ulrich vector bundle for (X,L).

Although this definition appears straightforward at first, determining the
existence of an Ulrich vector bundle on a given smooth variety is not an easy
task. In fact (see Proposition 2.4) we will observe that verifying whether a
homogeneous polynomial F can be written as a determinant of linear forms is
equivalent to finding an Ulrich line bundle on the hypersurface X given by the
equation F = 0. However it is not possible to find a rank one Ulrich bundle
for all varieties, as we will see in the following example. Let us consider a
smooth surface S ⊂ P3, and a rank r Ulrich vector bundle E for (S,H),
where H is the hyperplane divisor: by [C, Prop.2.1] we have that

c1(E) ·H =
r

2
H · (3H +KS).
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Let us now suppose that the canonical divisor KS is equal to zero, and that
Pic(S) = ZH, hence c1(E) = aH for a ∈ Z. The above equation becomes

aH2 =
3r

2
H2,

therefore 3r
2
∈ Z, and so r is even. This shows that we cannot always write

homogeneous polynomials as a linear determinant, but we can settle for a
weaker property: we ask whether X can be defined by a linear determinant.
Again (see Proposition 2.4), we will observe that a hypersurface X, given by
the equation F = 0, admits a rank r Ulrich vector bundle if and only if F r

is proportional to a determinant of linear forms.
Ulrich bundles first appeared during the 80′s in commutative algebra

in Ulrich [U], but they entered algebraic geometry in 2003 with Eisenbud,
Schreyer [ES], even if merely in the latest years they started to receive at-
tention. Nowadays, despite of many results, we are not yet able to find such
sheaves for all varieties.

In the case of curves, as we will see in Chapter 2, the characterization
above simplifies to the following: E is Ulrich if and only if E(−1) is a sheaf
with vanishing cohomology. Therefore, finding a rank one Ulrich bundle E on
a smooth curve C of genus g is equivalent to finding a divisor D of degree g−1
with no global sections, and indeed they are in a one-to-one correspondence.
As a matter of fact, there are divisors satisfying such properties: if we con-
sider the map ϕ : Cg−1 → Picg−1(C), which sends g− 1 points (p1, . . . , pg−1)
to the line bundleOC(p1+· · ·+pg−1), then it is known that ϕ is not surjective,
and therefore we find the requested divisors in Picg−1(C)\Im(ϕ).

More intricate is, instead, the case of surfaces.
The first part of this text provides the reader with all the preliminary

notions, highlighting the process of blowing-up a scheme along a closed sub-
scheme, with a focus on blow-ups of nonsingular projective surfaces at a
closed point. This becomes quite relevant in section 1.7 of Chapter 1, where
an important result is recalled: every nonsingular projective surface S has
a smooth minimal model S0, and S is obtained from S0 by a finite number
of successive blow-ups at closed points. Furthermore, we recall a classifica-
tion of minimal surfaces in the case of Kodaira dimension −∞ and 0. Then
we move on to describe Ulrich vector bundles and their properties, giving a
characterization and producing some examples. Eventually, in Chapter 3, we
prove an original result:
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Theorem 0.2. Let L be a very ample line bundle on a nonsingular projective
variety X. Let p ∈ X be a closed point corresponding to a sheaf of ideals I
on X, and let π : X̃ → X be the blowing-up of X with respect to I . If there
exists an Ulrich vector bundle for (X,L), then there exists an Ulrich vector

bundle for (X̃, π∗L⊗2 ⊗ OX̃(−E)), where E = π−1({p}) is the exceptional
divisor.

This result yields indeed interesting applications for surfaces. Since every
smooth surface is obtained by a finite number of blow-ups of its minimal
surface at closed points, then we have the following:

Corollary 0.3. If every minimal surface carries an Ulrich vector bundle,
then there exists an Ulrich vector bundle on every nonsingular projective
surface.

At the end, we show some cases of minimal surfaces which admit an Ulrich
vector bundle, based on their Kodaira dimension:

Corollary 0.4. Let S be a nonsingular projective surface with Kodaira di-
mension 0. Then S admits an Ulrich vector bundle.

Corollary 0.5. Let S be a nonsingular projective surface with Kodaira di-
mension −∞, and let us assume that the minimal model of S is within one
of the following:

1. P2,

2. Fn for n ≥ 0 and n 6= 1,

3. PC(E) for a rank 2 vector bundle E over a nonsingular projective curve
C, with invariant e > 0.

Then S admits an Ulrich vector bundle.

v



Notations and Conventions

For this reading, all the basic knowledge and definitions will be taken from
[H]. If not specified otherwise, a scheme is a separated scheme of finite type
over an algebraically closed field K. A variety is an integral scheme.
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Chapter 1

Preliminaries

1.1 Divisors and Line Bundles

1.1.1 Weil Divisors

Let X be a noetherian integral separated scheme which is nonsingular in
codimension 1.

Definition 1.1. We call prime divisor on X a closed integral subscheme
Y of codimention 1. Then WDiv(X) is the free abelian group generated by
the prime divisors, whose elements D =

∑
niYi, where ni are integers and

finitely many are different form zero, are called Weil divisors. We say that
D is effective, written D ≥ 0, if ni ≥ 0 for all i and we write D ≥ D′, for
any two divisors D and D′, if D−D′ is effective. Furthermore we define the
degree of D by degD =

∑
ni deg Yi.

If Y is a prime divisor, we know that the local ring OX,Y is a discrete
valuation ring with quotient field K(X), the function field on X. Therefore
we can define the valuation of Y , vY , by the discrete valuation of OX,Y . So,
for all f ∈ K(X)∗, vY (f) is an integer. By the properties of the valuation of
Y we know that OX,Y = {f ∈ K(X)∗ : vY (f) ≥ 0}, whose maximal ideal is
M = {f ∈ K(X)∗ : vY (f) > 0}. We observe that if U is an open subset of X
such that U ∩ Y 6= ∅ and f ∈ OX(U), then, vY (f) ≥ 0. If vY (f) is positive,
we say that f has a zero along Y ; if it is negative, then we say that f has a
pole along Y .

By [H, Cor.II.6.1] we know that vY (f) = 0 for all except finitely many
prime divisors Y . Therefore we can make the following definition.

1



CHAPTER 1. PRELIMINARIES 2

Definition 1.2. Let f ∈ K(X)∗. We define the principal divisor of f by

(f) =
∑

vY (f)Y.

Because of the properties of the discrete valuation vY , we know that, if
f, g ∈ K(X)∗, then (f/g) = (f)− (g).

Definition 1.3. Two Weil divisors D and D′ are said to be linearly equiva-
lent, written D ∼ D′, if D −D′ is a principal divisor.

Definition 1.4. The support of D =
∑
niYi is defined by supp(D) = ∪Yi.

1.1.2 Cartier Divisors

Let X be an integral scheme. We denote by KX the constant sheaf of rational
functions on X, that is the function field K(X). It containsOX as a subsheaf.
If we consider the sheaves K∗X and O∗X of invertible elements in, respectively,
the sheaves KX and OX , then there is an inclusion O∗X ⊆ K∗X of sheaves of
multiplicative abelian groups.

Definition 1.5. A Cartier divisor on X is a global section of the sheaf
K∗X/O∗X . By the properties of quotient sheaves, any Cartier divisor can be
described as a set {(Ui, fi)} consisting of an open covering {Ui} of X to-
gether with elements fi ∈ Γ(Ui,K∗X) = K(X)∗, such that for each i 6= j
fi/fj = gij ∈ Γ(Ui ∩ Uj,O∗X). The function fi is called a local equation of
{(Ui, fi)} at any point x ∈ Ui. We set Div(X) = Γ(X,K∗X/O∗X).

The set Div(X) is an abelian group with respect to the operation

{(Ui, fi)}+ {(U ′i′ , f ′i′)} = {(Ui ∩ U ′i′ , fif ′i′)}.

We say that D ∈ Div(X) is effective, written D ≥ 0, if fi ∈ Γ(Ui,OX) for
all i.

Definition 1.6. A Cartier divisor D is principal if it is in the image of the
natural map Γ(X,K∗X) → Γ(X,K∗X/O∗X), that is D can be represented by
{(X, f)}, with f ∈ Γ(X,K∗X) = K(X)∗. We denote D = div(f).

Definition 1.7. Two Cartier divisors are said to be linearly equivalent if
their difference is principal.
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Definition 1.8. The support of a divisor D = {(Ui, fi)}, written supp(D),
is the set of points x ∈ X such that a local equation of D at x is not a unit
in OX,x.

Proposition 1.9. Let X be an integral, separated noetherian scheme which
is locally factorial. Then the group WDiv(X) is isomorphic to the group
Div(X), and furthermore the principal Weil divisors correspond to the prin-
cipal Cartier divisors under this isomorphism.

Proof. See [H, Prop.II.6.11]

1.1.3 Line Bundles

From now on we will consider only Cartier divisors. We recall at first the
definition of vector bundle.

Definition 1.10. A coherent sheaf F on a scheme X is said to be locally
free of rank r if X can be covered by open sets {Ui}i∈I such that ∀ i ∈ I there
exists an isomorphism

ϕUi
: F|Ui

→ O⊕rUi
.

Note that if X is connected, then the rank is the same on every open covering
of X. Such a sheaf is also called vector bundle of rank r. In particular a
locally free sheaf of rank 1 (or line bundle) is called an invertible sheaf.

For any divisor D, described by {(Ui, fi)}, we can define a line bundle
OX(D) on X by the transition functions gij = fi/fj ∈ Γ(Ui ∩ Uj,O∗X). Let
us note that OX(D) is therefore a subsheaf of KX . Conversely, given a line
bundle L on X, we can recover a divisor D by taking fi for all i, where
f−1i : OUi

→ L|Ui
is an isomorphism. More precisely, we show the following

isomorphism.

Proposition 1.11. Let X be an integral scheme. There is an isomorphism
of abelian groups

Div(X)/Pr(X) ∼= Pic(X),

where Pr(X) denotes the subgroup of principal divisors of Div(X) and Pic(X)
denotes the Picard group of isomorphism classes of line bundles on X.

Proof. Let us consider the exact sequence of sheaves on X

0→ O∗X → K∗X → K∗X/O∗X → 0.
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Since K∗X is flasque, we obtain the following exact sequence of abelian groups

0→ Γ(X,O∗X)→ Γ(X,K∗X)
ϕ−→ Γ(X,K∗X/O∗X)→ H1(X,O∗X)→ 0.

By [H, Ex.III.4.5] we know that H1(X,O∗X) = Pic(X) and by definition
Im(ϕ) = Pr(X). Therefore Γ(X,K∗X/O∗X)/Im(ϕ) ∼= H1(X,O∗X), and this
proves the statement.

1.2 Linear Systems

Let X ⊆ Pr be nonsingular. In this case, by Proposition 1.9, the notions of
Weil divisor and Cartier divisor coincide. Furthermore by Proposition 1.11
we have a one-to-one correspondence between linear equivalence classes of
divisors and isomorphism classes of line bundles. Given a line bundle L on
X, we first take a look at the structure of Γ(X,L).

Definition 1.12. We define the divisor of zeros of s ∈ Γ(X,L), written
(s)0, as the effective divisor {(U,ϕU(s))}, where U is any open subset of X
on which L is trivial and ϕU : L|U → OU is the associated isomorphism.

Proposition 1.13. Let X ⊆ Pr be nonsingular. Let D0 be a divisor on X
and let L = OX(D0) the corresponding line bundle. Then:

1. for each nonzero s ∈ Γ(X,L), (s)0 is an effective divisor, which is
linearly equivalent to D0.

2. Every effective divisor linearly equivalent to D0 is (s)0 for some s ∈
Γ(X,L).

3. Two sections s, s′ ∈ Γ(X,L) are such that (s)0 = (s′)0 if and only if
there exists λ ∈ K∗ such that s = λs′.

Proof. See [H, Prop.II.7.7]

Remark 1.14. Statements 1. and 2. of the proposition give us a way to
describe the global sections of a line bundle L = OX(D0), that is Γ(X,L) =
{f ∈ K(X) : D0 + div(f) ≥ 0}.
Definition 1.15. A complete linear system on a nonsingular projective va-
riety X ⊆ Pr is the set of all effective divisors linearly equivalent to some
given divisor D0, denoted by |D0|. By the previous proposition notice that
there is a one-to-one correspondence between |D0| and P(Γ(X,OX(D0))). By
notation, we will at times write |L|, where L = OX(D0), instead of |D0|.
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Definition 1.16. A linear system Q on X is a subset of a complete linear
system |D0|, which corresponds to a sub-vector space V of Γ(X,OX(D0)),
that is Q = {(s)0 : ∀s ∈ V }. By notation, we will write at times |V |, instead
of Q.

Definition 1.17. A point x ∈ X is a base point of a linear system |V | if
x ∈ supp(D) for all D ∈ |V |. The base locus Bs(|V |) is the set of all base
points. One can see the base locus as the set of points in X at which all the
sections in V vanish. Furthermore we call base ideal b(|V |) the ideal sheaf
associated to Bs(|V |).

Remark 1.18. If {s0, . . . sr} is a base for V , we can determine a rational
map φ|V | : X Pr. If |V | is base point free, then φ|V | is a globally defined
morphism.

1.3 Amplitude

Definition 1.19. Let L be an invertible sheaf on a complete scheme X.

1. L is very ample if there exists a closed immersion φ|L| : X ↪→ Pr such
that L = OX(1) := OPr(1)|X .

2. L is ample if L⊗m is very ample for some m > 0.

Theorem 1.20. Let L be an invertible sheaf on a complete scheme X. Then
the following conditions are equivalent:

1. L is ample.

2. ∃ m0 ∈ N such that L⊗m is very ample ∀ m ≥ m0.

3. For each coherent sheaf F on X, ∃ m0(F) ∈ N such that H i(X,F ⊗
L⊗m) = 0 ∀ i > 0 and ∀ m ≥ m0(F).

4. For each coherent sheaf F on X, ∃ m0(F) ∈ N such that F ⊗ L⊗m is
globally generated ∀ m ≥ m0(F).

Proof. See [L, Thm.1.2.6].
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1.4 Some Useful Results about Cohomology

Theorem 1.21. Let P = K[x0, . . . , xr] and let Pr be the r-projective space
over K. Then:

1. P ∼= Γ∗(OPr) :=
⊕

n∈ZH
0(Pr,OPr(n)) as graded K-modules. Therefore

H0(Pr,OPr(n)) =

{
Pn n ≥ 0

0 n < 0

and in particular

h0(Pr,OPr(n)) =

{(
n+r
r

)
n ≥ 0

0 n < 0
.

2. H i(Pr,OPr(n)) = 0 for i 6= 0, r and for all n ∈ Z.

3. Hr(Pr,OPr(n)) = 0 for n ≥ −r, and

Hr(Pr,OPr(n)) = 〈xl00 · · · xlrr : lj < 0,
r∑
j=0

lj = n〉 for n ≤ −r − 1.

In particular

hr(Pr,OPr(n)) =

(
−n− 1

r

)
, n ≤ −r − 1

.

4. The natural map

H0(Pr,OPr(n))×Hr(Pr,OPr(−n−r−1))→ Hr(Pr,OPr(−r−1)) ∼= K

is a perfect pairing of finitely generated free K-modules, ∀ n ∈ Z.

Proof. See [H, Thm.III.5.1].

Definition 1.22. Let X ⊆ Pr be a projective scheme and F a coherent sheaf
on X. Then the Euler Characteristic of F is defined by

χ(X,F) =
∑
i≥0

(−1)i dimkH
i(X,F).
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Proposition 1.23. Given a short exact sequence

0→ F ′ → F → F ′′ → 0

of coherent sheaves on X ⊆ Pr, we have χ(X,F) = χ(X,F ′) + χ(X,F ′′).

Proof. Let us apply the rank-nullity theorem to the long exact sequence

0→ H0(X,F ′)→ H0(X,F)→ H0(X,F ′′)→ H1(X,F ′)→ . . .

and we deduce that

0 = h0(X,F ′)− h0(X,F) + h0(X,F ′′)− h1(X,F ′) + . . .

The statement is then clear.

Theorem 1.24. If f : X → Y is an affine morphism and if F is a quasi-
coherent sheaf on X, then

H•(Y, f∗F) = H•(X,F)

Proof. See [S, Thm.13.5]

1.5 Riemann-Roch Theorem

Theorem 1.25. Let C ⊆ Pr be a nonsingular curve of genus g, and let D be
a divisor on C of degree d. Then:

χ(C,OC(D)) = d+ 1− g

Proof. See [H, Thm.IV.1.3]

Theorem 1.26. Let S ⊆ Pr be a nonsingular surface, and let D be a divisor
on S. Then:

χ(S,OS(D)) = χ(S,OS) +
1

2
D.(D −KS),

where KS is the canonical divisor.

Proof. See [H, Thm.V.1.6]
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1.6 Blowing-Up

In this section we will consider the following conditions:
(*)X is a noetherian scheme, S is a quasi-coherent sheaf of OX-modules

with a structure of a sheaf of graded OX-algebras. Thus S ∼=
⊕

d≥0 Sd,
where Sd is the homogeneous part of degree d. We assume that S0 = OX ,
that S1 is a coherent OX-module and that S is locally generated by S1 as
a S0-algebra.

Definition 1.27. Let X be a noetherian scheme, and let I be a coherent
sheaf of ideals on X. If I d is the d-th power of I and I 0 = OX , then
we consider S =

⊕
d≥0 I d. Clearly X and S satisfy (*), so we consider

X̃ = Proj S . We define X̃ to be the blowing-up of X with respect to the
coherent sheaf of ideals I .

Proposition 1.28. Let X be a noetherian scheme, I a coherent sheaf of
ideals on X, and let π : X̃ → X be the blowing-up of X with respect to I .
Then:

1. the inverse image ideal sheaf Ĩ = π−1I · OX̃ is an invertible sheaf on

X̃, which is equal to OX̃(1).

2. If Y is the closed subscheme of X corresponding to I and U = X−Y ,
then π : π−1(U)→ U is an isomorphism.

Proof. See [H, Prop.II.7.13].

The subscheme Ỹ ⊆ X̃, corresponding to the inverse image ideal sheaf

Ĩ , will be called the exceptional divisor.
Now we need to recall the definition of projective space bundle associated

to a locally free coherent sheaf.

Definition 1.29. Let X be a noetherian scheme, and let E be a locally free
coherent sheaf on X. We define the projective space bundle associated to E
P(E ) as follows. Let S(E ) be the symmetric algebra of E . Then X and S(E )
satisfy (*) and we define P(E ) = Proj S(E ),

Theorem 1.30. Let X be a nonsingular projective variety over K, and let
Y ⊆ X be a nonsingular closed subvariety, with ideal sheaf I .
Let π : X̃ → X be the blowing-up of X with respect to I , and let Y ′ ⊆ X̃ be
the subscheme defined by the inverse image sheaf I ′ = π−1I · OX̃ . Then:
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1. X̃ is also nonsingular.

2. Y ′, together with the induced projective map π : Y ′ → Y , is isomorphic
to P(I /I 2), the projective space bundle associated to the locally free
sheaf I /I 2 on Y .

3. Under this isomorphism, the normal sheaf NY ′/X̃ = H om(I ′/I ′2,OY ′)
corresponds to OP(I /I 2)(−1).

Proof. See [H, Thm.II.8.24].

Proposition 1.31. Let X be a nonsingular projective variety of dimension
n, I a coherent sheaf of ideals on X corresponding to a closed point P ∈ X,
and let π : X̃ → X be the blowing-up of X with respect to I . Then we have
π∗OX̃ = OX , and Riπ∗OX̃ = 0 for i > 0.

Proof. Let E be the exceptional divisor, and let Ĩ be the corresponding
ideal sheaf. Since π is an isomorphism of X̃ − E onto X − {P}, it is clear
that the natural map OX → π∗OX̃ is an isomorphism, except possibly at P ,
and that the sheaves F i = Riπ∗OX̃ for i > 0 have support at P . We use [H,
Thm.III.11.1] to compute these F i. That is, taking completions of the stalks
at P , we have

F̂ i ∼= lim←−H
i(Em,OEm)

where Em is the closed subscheme of X̃ corresponding to Ĩ m. There are
natural exact sequences

0→ Ĩ m/Ĩ m+1 → OEm+1 → OEm → 0

for each m. Furthermore, by Theorem 1.30 we have Ĩ /Ĩ 2 = OE(1), and

by [H, Thm.II.8.21A(e)] we have that Ĩ m/Ĩ m+1 ∼= Sm(Ĩ /Ĩ 2) ∼= OE(m).
Now E ∼= Pn−1, so H i(E,OE(m)) = 0 for i > 0 and all m ≥ 0 by Theorem
1.21. Since E1 = E, we will prove by induction on m that H i(Em,OEm) = 0
for all i > 0 and m > 0. Let us consider the exact sequences

0 = H i(E,OE(m))→ H i(Em+1,OEm+1)→ H i(Em,OEm)

for m > 0.
If m = 1, H i(E1,OE1) = H i(Pn−1,OPn−1) = 0 for all i > 0. If m ≥ 2,

suppose that H i(Em,OEm) = 0 for all i > 0, then, from the previous exact
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sequence, we obtain that H i(Em+1,OEm+1) = 0 for all i > 0. It follows that

F̂ i = 0 for i > 0. Since F i is a coherent sheaf with support at P , F̂ i = F i,
thus F i = 0 for all i > 0.

The equality π∗OX̃ = OX follows from the fact that X is normal and π
is birational. (See proof of [H, Cor.III.11.4]).

The following result is taken from [BEL, Lemma 1.4].

Proposition 1.32. Let X be a nonsingular projective variety of dimension
n, I a coherent sheaf of ideals on X corresponding to a closed point P ∈ X,
and let π : X̃ → X be the blowing-up of X with respect to I . Then, if E is
the exceptional divisor, for any locally free sheaf F on X we have

H i(X̃, π∗F ⊗OX̃(tE)) = H i(X,F)

for all i ≥ 0 and for 0 ≤ t ≤ n− 1.

Proof. By the projection formula [H, Ex.II.5.1(d)] and [H, Ex.III.8.1], it is
sufficient to show that π∗OX̃(tE) = OX and Riπ∗OX̃(tE) = 0 for i > 0 and
0 ≤ t ≤ n − 1. If t = 0, we can apply Proposition 1.31. For t ≥ 1, let us
consider the exact sequence

0→ OX̃((t− 1)E)→ OX̃(tE)→ OE(tE)→ 0.

Then we can prove the statement by induction on t, using the facts that E =
P(I /I 2), that OE(E) = OP(I /I 2)(−1), and using [H, Ex.III.8.4(a)]

The following result is taken from [BS, Thm.1.3].

Theorem 1.33. Let X be a nonsingual projective variety. Let L be a line
bundle on X and let Q ⊆ |L| be a nonempty linear system, with base locus
B. Then, if ϕ : X PN is the rational map associated to Q, we have:

1. the graph, Γϕ ⊆ X×PN , of ϕ is isomorphic to the blowing up, π : X̃ →
X, of X along B.

2. Let E be the exceptional divisor. Then the pullback of OPN (1) to Γϕ
under the map induced by the projection to PN is the sheaf π∗L ⊗
OX̃(−E).

Proof. It follows from [H, Example II.7.17.3], [Fu, Chap.4.4] and [Ha, Exam-
ple 7.18].
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1.7 Minimal Surfaces

Results appearing in this section are taken from [B].

Definition 1.34. For a nonsingular projective surface S we denote by B(S)
the set of isomorphism classes of surfaces birationally equivalent to S.
If S1, S2 ∈ B(S), then we say that S1 dominates S2 if there is a birational
morphism S1 → S2. Therefore we can define an order on B(S).
A surface S is minimal if its class in B(S) is minimal.

Proposition 1.35. Every nonsingular projective surface dominates a mini-
mal surface.

Proof. See [B, Thm.II.16]

Theorem 1.36. Let f : S → S0 be a birational morphism of nonsingular
projective surfaces. Then there is a sequence of blow-ups πk : Sk → Sk−1 at a
closed point Pk−1 ∈ Sk−1, for k = 1, . . . , n, and an isomorphism u : S → Sn
such that f = π1 ◦ · · · ◦ πn ◦ u.

Proof. See [B, Thm.II.11].

Corollary 1.37. Every nonsingular projective surface is obtained from a
minimal surface by a finite number of successive blow-ups.

Proof. It follows by Proposition 1.35 and Theorem 1.36.

Our intent is to give a classification of minimal surfaces in the case of Ko-
daira dimension −∞, 0. In order to do so, we define an important birational
invariant of nonsingular projective varieties, the Kodaira dimension. Let us
now fix some notation. For a nonsingular projective variety X we define:

1. the mth plurigenus Pm = h0(X,OX(mKX)).

If X is a surface:

2. pg = h2(X,OX) = h0(X,OX(KX)),

3. q = h1(X,OX).

There are many ways to define the Kodaira dimension, and we will give the
following:
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Definition 1.38. Let X be a nonsingular projective variety of dimension n,
KX be a canonical divisor of X, and let φ|mKX | : X PPm−1 be the rational
map associated with the linear system |mKX |. Then, the Kodaira dimension
of X, written k(X), is the maximum dimension of the images φ|mKX |(X),
for m ≥ 1.

Let us notice that, if |mKX | = ∅, then φ|mKX |(X) = ∅, and we say
dim(∅) = −∞. Furthermore one sees that k(X) ∈ {−∞, 0, 1, . . . , n}.

Remark 1.39. An equivalent definition states that the Kodaira dimension of
X can be given by the minimal k ∈ N∪{−∞} such that h0(X,OX(mKX))/mk

is bounded.

Now we can give a classification of minimal surfaces with Kodaira dimen-
sion equal to −∞, 0.

Theorem 1.40. Let S0 be a minimal surface such that k(S0) = 0. Then S0

belongs to one of the following 4 cases:

1. pg = 0, q = 0; we say that S0 is an ”Enriques surface”.

2. pg = 0, q = 1; then S0 is a bielliptic surface.

3. pg = 1, q = 0; we say that S0 is a ”K3 surface”.

4. pg = 1, q = 2; then S0 is an Abelian surface.

Proof. See [B, Thm.VIII.2]

Remark 1.41. Let S be a nonsingular projective surface. By [B, Prop.III.21]
and [B, Thm.VI.17] we deduce that:

k(S) = −∞ ⇐⇒ S is a ruled surface.

Proposition 1.42. Let S0 be a minimal surface such that k(S0) = −∞.
Then S0 belongs to one of the following 2 cases:

1. S0 = P2 or S0 = Fn := P(OP1 ⊕OP1(n)), n ≥ 0, n 6= 1.

2. S0 is a geometrically ruled surfaces over a nonsingular projective curve
C, that is the projective bundle PC(E), where E is a rank 2 vector
bundle over C.

Proof. For case 1. apply [B, Thm.V.10]. Case 2. follows by [B, Thm.III.10
and Prop.III.7].
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1.8 Finite Morphisms

Theorem 1.43. Let f : X → Y be a finite surjective morphism of nonsin-
gular varieties, and let d be its degree. Let F be a locally free sheaf of rank r
on X. Then f∗F is a locally free sheaf of rank rd on Y .

Proof. It follows from [H, Cor.III.12.9] for i = 0. Furthermore it is useful
to notice that, by [H, Ex.III.9.3(a)], it follows that if f is a finite surjective
morphism of nonsingular varieties over K, then f is flat.

1.9 Castelnuovo-Mumford Regularity

Definition 1.44. Let F be a coherent sheaf on the projective space Pr, and
let m be an integer. F is said to be m-regular (in the sense of Castelnuovo-
Mumford) if

H i(Pr,F(m− i)) = 0 ∀i > 0.

Theorem 1.45. Let F be an m-regular sheaf on Pr. Then ∀ k ≥ 0:

1. F(m+ k) is globally generated.

2. The natural maps

H0(Pr,F(m))⊗H0(Pr,OPr(k))→ H0(Pr,F(m+ k))

are surjective.

3. F is (m+k)-regular.

Proof. See [L, Thm.1.8.3].



Chapter 2

Ulrich Bundles

2.1 General Properties

Proposition 2.1. Let E be a rank r vector bundle on a smooth variety X ⊆
PN of dimension n and degree d, such that H i(X,E(−p)) = 0 ∀ i ≥ 0 and
for 1 ≤ p ≤ n. Then

1. E is 0-regular and globally generated.

2. Hp(X,E) = 0 ∀ p > 0.

3. h0(X,E) = rd.

Proof. (1.) By hypothesis we observe that Hp(X,E(−p)) = 0 for 1 ≤ p ≤ n,
therefore ∀ p > 0 by Grothendieck’s Theorem [H, Thm.III.2.7]. This means
that E is 0-regular, and by Theorem 1.45 we have that E is globally generated.

(2.) By condition 1. and Theorem 1.45 we have that E is k-regular ∀
k ≥ 0, which means that Hp(X,E(k − p)) = 0 ∀ p > 0. If we take k = p,
then we have Hp(X,E) = 0 ∀ p > 0.

(3.) By [L, Thm.1.1.24] and [H, Thm.4.1, Appendix A], χ(X,E(m))

is a polynomial P (m) in m ∈ Z of degree n and leading coefficient r (H)n

n!
,

where H is a hyperplane section of X. We also gather by [L, Thm.1.1.24]

that χ(X,OX(m)) is a polynomial on degree n and leading coefficient (H)n

n!
.

Now degX = d := n! (H)n

n!
, therefore (H)n = d, obtaining that the leading

coefficient of P (m) is rd
n!

. Since χ(X,E(t)) = 0 for −n ≤ t ≤ −1, P (m)
vanishes for m = −n, . . . ,−1, hence P (m) = rd

n!
(m+1) . . . (m+n). Therefore

rd = P (0) = χ(X,E) = h0(X,E), because hi(X,E) = 0 ∀ i > 0 by (2.).

14
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The following result is taken from [B4, Thm.1].

Theorem 2.2. Let X ⊆ PN be a smooth variety of dimension n, and let E
be a rank r vector bundle on X. The following conditions are equivalent:

1. There exists a linear resolution

0→ Lc → Lc−1 → · · · → L0 → E → 0 (2.1)

with c = codim(X,PN) and Li = OPN (−i)⊕bi, for 0 ≤ i ≤ c and some
bi ≥ 1.

2. H i(X,E(−p)) = 0 ∀ i ≥ 0 and for 1 ≤ p ≤ n.

3. If π : X → Pn is a finite linear projection, then the vector bundle π∗E
is trivial.

Proof. Case X = PN
If 3. holds, then π : PN → PN is the identity map and π∗E = E is trivial.
If 1. holds, we have c = 0. Therefore the sequence 0 → L0 → E → 0 is

exact ⇔ E ∼= L0 = O⊕b0PN is trivial.
Now we want to prove that E is trivial ⇔ H i(PN , E(−p)) = 0 ∀ i ≥ 0

and for 1 ≤ p ≤ N .
(⇒) It is sufficient to notice that H i(PN ,OPN (−p)) = 0 for i 6= N and

for p > 0, and for i = N and for p ≤ N .
(⇐) Applying Proposition 2.1 to E we have that h0(PN , E) = r ·degPN =

r and that E is globally generated. This implies that

H0(PN , E) = K⊕r.

Since E is globally generated, we have a surjective morphism

H0(PN , E)⊗OPN
∼= O⊕rPN

ϕ−→ E.

This means that, ∀ x ∈ PN ,

0→ kerϕx → O⊕rPN ,x

ϕx−→ Ex → 0

is an exact sequence of OPN ,x-modules. Let us notice that kerϕx is finitely
generated by [AM, Ex.2.12]. Now, since K is a OPN ,x flat module (it follows
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by [AM, Ex.2.20]), tensoring with K we obtain the following exact sequence
of K-vector spaces

0→ kerϕx ⊗K → O⊕rPN ,x
⊗K ϕx⊗id−−−→ Ex ⊗K → 0,

where ϕx ⊗ id is surjective. Since E is locally free of rank r, then clearly
ϕx ⊗ id is an isomorphism, hence kerϕx ⊗ K = 0. Since K 6= 0, by [AM,
Ex.2.3], we have that kerϕx = 0. Thus we have O⊕rPN

∼= E.
General Case
If π : X → Pn is a finite morphism, thus an affine morphism, then

H i(X,E(−p)) = H i(Pn, π∗E(−p)) ∀ i ≥ 0 by Theorem 1.24.
(3.⇒ 2.) By hypothesis we have that π∗E is trivial, henceH i(X,E(−p)) =

H i(Pn, π∗E(−p)) = 0 ∀ i ≥ 0 and for 1 ≤ p ≤ n.
(2.⇒ 3.) The vector bundle F = π∗E on Pn is such that H i(Pn, F (−p)) =

H i(X,E(−p)) = 0 ∀i ≥ 0 and for 1 ≤ p ≤ n. Therefore, by using the case
X = Pn, we have that F is trivial.

(1. ⇒ 2.) Let 1 ≤ p ≤ n and i ≥ 0. Tensoring (2.1) by OPN (−p), we
obtain the the exact sequence

0→ Lc(−p)→ Lc−1(−p)→ · · · → L0(−p)→ E(−p)→ 0 (2.2)

where ϕk : Lk+1(−p) → Lk(−p) for k = 0, . . . , c − 1 are the morphisms
appearing in (2.2). Let us clarify that the sheaf E on PN appearing in
(2.1), by abuse of notation, is in fact the sheaf j∗E, where j : X ⊆ PN
is the inclusion. Therefore the cohomology of E, considered as a sheaf on
PN , coincides with the cohomology of E as a sheaf on X, by Theorem 1.24.
Defining Gk = Im(ϕk) = ker (ϕk−1), we can extract from (2.2) the following
exact sequences:

0→ G0 → L0(−p)→ E(−p)→ 0

0→ Gk → Lk(−p)→ Gk−1 → 0, k = 1, . . . , c− 1.

Let us prove that H i+k(PN ,OPN (−k − p)) = 0 for k = 0, . . . , c. If i+ k 6= N
the statement is trivial; if i + k = N we have H i+k(PN ,OPN (−k − p)) =
H0(PN ,OPN (k + p − N − 1)), which vanishes for k + p − N − 1 ≤ −1.
Recalling that c − N = −n, we have k + p − N − 1 ≤ −1 ⇔ k − N ≤ −p.
Now k − N ≤ c − N = −n ≤ −p, hence H0(PN ,OPN (k + p − N − 1)) = 0.
This implies that H i+k(PN , Lk(−p)) = 0 ∀ i ≥ 0, for 1 ≤ p ≤ n and for
k = 0, . . . , c. Let us now prove that H i+k(PN , Gk−1) = 0 for k = 1, . . . , c:

0→ Gc−1 ∼= Lc(−p)→ Lc−1(−p)→ Gc−2 → 0
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is exact, therefore

0 = H i+c−1(PN , Lc−1(−p))→ H i+c−1(PN , Gc−2)→ H i+c(PN , Lc(−p)) = 0

is exact, thus H i+c−1(PN , Gc−2) = 0. Repeating the process from

0→ Gk → Lk(−p)→ Gk−1 → 0

we conclude that H i+k(PN , Gk−1) = 0 for k = c − 2, . . . , 1. In particular
H i+1(PN , G0) = 0 and, having the exact sequence

0→ G0 → L0(−p)→ E(−p)→ 0

we observe that

0 = H i(PN , L0(−p))→ H i(PN , E(−p))→ H i+1(PN , G0) = 0

is exact, achieving H i(PN , E(−p)) = 0 ∀ i ≥ 0 and for 1 ≤ p ≤ n. Therefore
H i(X,E(−p)) = 0 ∀ i ≥ 0 and for 1 ≤ p ≤ n.

(2. ⇒ 1.) Assuming 2. holds, our objective is to define by induction a
sequence of 0-regular sheaves Ki on PN , for 0 ≤ i ≤ c, such that:

a) K0 = E;

b) Ki+1(−1) is the kernel of the evaluation map H0(PN , Ki)⊗OPN → Ki;

c) Hq(PN , Ki(−j)) = 0 for 1 ≤ j ≤ n+ i and ∀ q ≥ 0.

For i = 0, it follows from 2. that E satisfies c) and that E is 0-regular by
Proposition 2.1. Let us suppose now that the Kt are defined as requested
for 0 ≤ t ≤ i; we define Ki+1 by b). Since Ki is 0-regular by induction
hypothesis, applying Theorem 1.45 we get the exact sequence

0→ Ki+1(−1)→ H0(PN , Ki)⊗OPN → Ki → 0 (2.3)

Tensoring (2.3) with OPN (1− j), we get the following exact sequence

0→ Ki+1(−j)→ H0(PN , Ki)⊗OPN (1− j)→ Ki(1− j)→ 0

Taking q ≥ 1, if we consider the exact sequences

Hq−1(PN , Ki(1− j))→ Hq(PN , Ki+1(−j))→ H0(PN , Ki)⊗Hq(PN ,OPN (1− j))
0→ H0(PN , Ki+1(−j))→ H0(PN , Ki)⊗H0(PN ,OPN (1− j))
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we have that: by induction hypothesisHq−1(PN , Ki(1−j)) = 0 for 1 ≤ j−1 ≤
n + i, Hq(PN ,OPN (1 − j)) = 0 for j ≤ N + 1 and H0(PN ,OPN (1 − j)) = 0
for j ≥ 2. Since i ≤ c and therefore n+ i+ 1 ≤ n+ c+ 1 = N + 1, we have
that Hq(PN , Ki+1(−j)) = 0 for 2 ≤ j ≤ n+ i+ 1 and ∀ q ≥ 0.

Let us now consider the case j = 1. Since H0(PN ,OPN ) ∼= K, then
H0(PN , Ki)⊗H0(PN ,OPN ) ∼= H0(PN , Ki) and

H0(PN , Ki)⊗H0(PN ,OPN )→ H0(PN , Ki)

is an isomorphism. Hence Hq(PN , Ki+1(−1)) = 0 for q = 0, 1. Furthermore,
since Hq−1(PN ,OPN ) = 0 for q ≥ 2, from the exact sequence

0→ Hq−1(PN , Ki)→ Hq(PN , Ki+1(−1))→ 0

we get that Hq(PN , Ki+1(−1)) = Hq−1(PN , Ki) = 0 for q ≥ 2, because Ki is
0-regular and H l(PN , Ki) = 0 ∀ l ≥ 1 by Theorem 1.45.

From (2.3) we also get Hq(PN , Ki+1(−q)) = Hq−1(PN , Ki(−q + 1)) = 0
∀ q > 1, and, as shown above, H1(PN , Ki+1(−1)) = 0. Thus Ki+1 is 0-regular
and satisfies c). Put Li := H0(PN , Ki)⊗OPN (−i) for 0 ≤ i ≤ c−1; the exact
sequences

0→ Ki+1(−i− 1)→ Li → Ki(−i)→ 0, 0 ≤ i ≤ c− 1

give a long exact sequence

0→ Kc(−c)→ Lc−1 → · · · → L0 → E → 0

Now c) means that Hq(PN , Kc(−j)) = 0 for 1 ≤ j ≤ n+ c = N and ∀ q ≥ 0,
and, by the caseX = PN , we have thatKc is trivial. Now define Lc = Kc(−c):
since Kc = O⊕bcPN , for some bc ≥ 1, we have that Lc = O⊕bcPN (−c).

Definition 2.3. A vector bundle E is an Ulrich vector bundle if it satisfies
one of the equivalent conditions of Theorem 2.2.

Let us now consider a particular case, that is X ⊆ PN is a hypersurface
of degree d, given by the equation F = 0. We will see that determining
whether X can be defined by a determinant of linear forms is equivalent to
finding a rank r Ulrich vector bundle on X, and we will consider condition 1.
of Theorem 2.2. By Proposition 2.1, we have that h0(X,E) = rd, therefore
one sees easily that b0 = rd (this follows by the linear resolution appearing
in condition 1. of Theorem 2.2, which is a short exact sequence in this case).

The following result is taken from [B4, Prop.1].
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Proposition 2.4. Let X ⊆ PN be a smooth hypersurface of degree d, given
by the equation F = 0, and let r ≥ 1 be an integer. The following conditions
are equivalent:

1. F r = detL, where L is a (rd)× (rd) matrix of linear forms on PN ;

2. there exists a rank r vector bundle E on X and an exact sequence

0→ OPN (−1)⊕rd
L−→ O⊕rdPN → E → 0.

Proof. Let us assume that 2. holds. L can be seen as a (rd) × (rd) matrix
(Lij), where Lij ∈ H0(PN ,OPN (1)), and we observe that, for all x ∈ PN ,

Lx is the matrix (
Lij

1
). Therefore detL = detLx for all x ∈ PN . Let px

be the homogeneous prime ideal associated to x: we denote by Drd−1(L)
the set {x ∈ PN |rk(Lx) ≤ rd − 1} = {x ∈ PN | det(Lx) ∈ px}. Now, x /∈
X ⇐⇒ Ex = 0 ⇐⇒ Lx is an isomorphism ⇐⇒ rk(Lx) = rd. Therefore
X coincides with Drd−1(L). We observe that detL ∈ ∩x∈Xpx = ∩F∈pxpx =√
F = (F ), hence detL = F ·G1, for some homogeneous polynomialG1. Then

G1 must be in (F ), otherwise X would be strictly contained in Drd−1(L), thus
detL = F 2 ·G2. If we iterate the process, we obtain that detL is proportional
to some power of F , hence F r for degree reasons.

Let us now assume that 1. holds, and let E be the cokernel of the injective
morphism

L : OPN (−1)⊕rd → O⊕rdPN .

We observe at first that the support of E coincides withX: x ∈ Supp(E) ⇐⇒
Ex 6= 0 ⇐⇒ Lx is not surjective ⇐⇒ detL ∈ px. Therefore, by hypothesis,
Supp(E) = {x ∈ PN |F ∈ px} = X.

Since OPN ,x and OX,x have the same residue field, that is K, then for all
x ∈ X the depth of the stalk Ex as a OPN ,x-module or as a OX,x-module is
the same. Furthermore we have, for all x ∈ X, a projective resolution

0→ OPN ,x(−1)⊕rd → O⊕rdPN ,x
→ Ex → 0 (2.4)

of Ex, therefore 0 ≤ pdOPN,x
(Ex) ≤ 1. Notice that, for x ∈ X, Ex is not

a free OPN ,x-module, because, otherwise, we would have rk(Ex) = 0, hence
Ex = 0, which is a contradiction. Then, since OPN ,x is a local ring, we have
that Ex is not a projective OPN ,x-module, so we have pdOPN,x

(Ex) = 1. Now,

for all x ∈ X, Ex is a finitely generated OPN ,x-module, because we have that
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Ex is the quotient of a free OPN ,x-module of finite rank by the exact sequence
(2.4). So for all x ∈ X, by [H, Prop.III.6.12A], we have that

depthOX,x
(Ex) = depthOPN,x

(Ex) = dimOPN ,x − pdOPN,x
(Ex) =

= dimOPN ,x − 1 = dimOX,x,

hence pdOX,x
(Ex) = 0 and Ex is a free OX,x-module, so E is locally free on X.

Now we observe that, if IX/PN is the ideal sheaf corresponding to X, then
OX,x ∼= OPN ,x/(IX/PN )x as rings, and so, since Ex is both a OX,x-module and
a finitely generatedOPN ,x-module, we have that Ex is also a finitely generated
OX,x-module. This follows by the fact that if {f1, . . . , fh} is a set of generators
for Ex as a OPN ,x-module, then {(f1 + (IX/PN )x), . . . , (fh + (IX/PN )x)} is a
set of generators for Ex as a OX,x-module. Finally we have that Ex is a free
OX,x-module of finite rank. Let us say rk(Ex) = s. Therefore E satisfies
condition 1. of Theorem 2.2 , which is equivalent to condition 2. of the same
Theorem. Hence E satisfies the hypothesis of Proposition 2.1, and so we
have h0(X,E) = sd. Now, considering the exact sequence

0→ OPN (−1)⊕rd → O⊕rdPN → E → 0

we achieve, by the corresponding long exact sequence, that K⊕rd ∼= K⊕sd, so
r = s.

We can now look at some consequences of Theorem 2.2 ([B4, Section 2]).

Example 2.5. Let E be a rank r Ulrich vector bundle on X ⊆ PN of degree
d and dimension n. Then H i(X,E(j)) = 0 ∀ j ∈ Z and for 0 < i < n.
Furthermore h0(X,E) = rd.

Proof. By condition 3. of Theorem 2.2 we have that H i(X,E(j)) =
H i(Pn, π∗E(j)), which vanishes for 1 ≤ i ≤ n− 1 and for all j ∈ Z. Further-
more it follows by Proposition 2.1 that h0(X,E) = rd.

Example 2.6. The Ulrich vector bundles on a curve C ⊆ PN are the bundles
E(1), where E is a vector bundle with vanishing cohomology.

Proof. If F is an Ulrich bundle on a curve C ⊆ PN , by condition 2. of Theo-
rem 2.2 we have that H i(C,F (−1)) = 0 ∀ i ≥ 0. Setting E = F (−1), then E
has vanishing cohomology and F = E(1). On the other hand, if E is a vector
bundle on a curve C with vanishing cohomology, then H i(C, (E(1))(−1)) = 0
∀ i ≥ 0. Therefore E(1) satisfies condition 2. of Theorem 2.2, hence it is an
Ulrich bundle.
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Example 2.7. If E is an Ulrich bundle on X ⊆ PN of dimension n and Y
is a hyperplane section of X, then E|Y is an Ulrich bundle on Y .

Proof. Let us take the exact sequence

0→ E(−1)→ E → E|Y → 0

Tensoring with OX(−j) we get that

0→ E(−1− j)→ E(−j)→ E|Y (−j)→ 0

and therefore also

H i(X,E(−j))→ H i(Y,E|Y (−j))→ H i+1(X,E(−1− j)) i ≥ 0

are exact sequences. By condition 2. of Theorem 2.2 it follows that for all
i ≥ 0 we have H i(X,E(−j)) = 0 for 1 ≤ j ≤ n and H i+1(X,E(−1− j)) = 0
for 0 ≤ j ≤ n − 1. Hence H i(Y,E|Y (−j)) = 0 for 1 ≤ j ≤ n − 1 = dimY ,
proving that E|Y is an Ulrich vector bundle on Y.

Example 2.8. Let π : X → Y be a finite surjective morphism, L a very
ample line bundle on Y and E a vector bundle on X. Then E is an Ulrich
bundle for (X, π∗L) if and only if π∗E is an Ulrich bundle for (Y, L).

Proof. Since L is very ample, there exists a closed embedding Y ⊆ PN such
that L ∼= OY (1) and π∗L ∼= OX(1). Furthermore L⊗−k ∼= OY (−k). Therefore
E ⊗ π∗L⊗−k ∼= E(−k) = E ⊗ OX(−k) and π∗E ⊗ L⊗−k ∼= (π∗E)(−k) =
(π∗E)⊗OY (−k).
By Theorem 1.24 and by the projection formula [H, Ex.II.5.1(d)], we have
H•(X,E⊗π∗L⊗−k) = H•(Y, π∗E⊗L⊗−k). Since π is finite, we have dimX =
dimY , and then, by condition 2. of Theorem 2.2, we have that E is an Ulrich
bundle for (X, π∗L) if and only if π∗E is an Ulrich bundle for (Y, L).

Example 2.9. Let E and F be Ulrich vector bundles for (X,OX(1)) and
(Y,OY (1)); put n = dimX. Then E � F (n) is an Ulrich vector bundle for
(X × Y,OX(1) �OY (1)).

Proof. By the Künneth formula [SW], we have that

H•(X × Y,E(−p) � F (n− p)) = H•(X,E(−p))⊗H•(Y, F (n− p))

By condition 2. of Theorem 2.2, the first factor vanishes for 1 ≤ p ≤ n and
the second one for 1 ≤ p− n ≤ dimY .
Therefore H•(X × Y,E(−p) � F (n − p)) = 0 for 1 ≤ p ≤ n + dimY =
dimX × Y .
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It is useful to notice that Example 2.9 can be generalized for a finite
number of vector bundles:

Remark 2.10. Let Ei be an Ulrich vector bundle for (Xi,OXi
(1)), where

ni = dimXi, for i = 0, . . . ,m. Then E0�E1(n0)� · · ·�Em(n0 + · · ·+nm−1)
is an Ulrich vector bundle for (X0 × · · · ×Xm,OX0(1) � · · ·�OXm(1)).

Proof. Let us proceed by induction on m.
For m = 1, it is sufficient to apply Example 2.9.
For m > 1, by induction hypothesis, we have that F := E0 � E1(n0) �
· · · � Em−1(n0 + · · · + nm−2) is an Ulrich vector bundle for (Y := X0 ×
· · · × Xm−1,OY (1) = OX0(1) � · · · � OXm−1(1)), with n0 + · · · + nm−1 =
dimY . Applying Example 2.9 to F and Em we have that F �Em(dimY ) =
E0 � E1(n0) � · · · � Em(n0 + · · · + nm−1) is an Ulrich vector bundle for
(Y ×Xm = X0 × · · · ×Xm,OY (1) �OXm(1) = OX0(1) � · · ·�OXm(1)).

Example 2.11. There exists an Ulrich vector bundle of rank n! for (Pn,OPn(d))
for all d ≥ 1.

Proof. Let X be vd(P1), where vd : P1 → Pd is the d-uple embedding. If
we consider the quotient map π : (P1)n → SymnP1 = Pn, whose degree
is n!, then π∗OPn(1) is the sheaf OP1(1) � · · · � OP1(1), hence π∗OPn(d) =
OP1(d) � · · ·�OP1(d), which is the sheaf OX(1) � · · ·�OX(1).
Let us take E = OP1(d − 1) : we observe that E is Ulrich for (X,OX(1)),
because the sheaf E(−1) = OP1(d− 1)⊗OX(−1) = OP1(d− 1)⊗OP1(−d) =
OP1(−1) has vanishing cohomology by Theorem 1.21. Therefore, by Remark
2.10, we have that L := E � E(1) � · · · � E(n − 1) = OP1(d − 1) � · · · �
OP1(nd− 1) is Ulrich for ((P1)n, π∗OPn(d)), hence, by Example 2.8, we have
that π∗L is Ulrich for (Pn,OPn(d)). Lastly, L is a line bundle, therefore, by
Theorem 1.43, we have that π∗L has rank n!.

Example 2.12. Let X ⊆ PN be a smooth variety of dimension n. If there
exists a rank r Ulrich vector bundle for (X,OX(1)), then there exists a rank
rn! Ulrich vector bundle for (X,OX(d)) for all d ≥ 1.

Proof. Let π : X → Pn be a finite linear projection, and let F be an Ulrich
vector bundle of rank n! for (Pn,OPn(d)), which exists by Example 2.11. Let
assume E is a rank r Ulrich bundle for (X,OX(1)): we want to show that the
sheaf G := E ⊗ π∗F is an Ulrich vector bundle for (X,OX(d)) of rank rn!.
Let us fix the rank of G equal to s. Clearly the degree of π is equal to degX,
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therefore, by Theorem 1.43, we have that π∗G and π∗E are vector bundles
of rank s · degX and r · degX respectively. Furthermore, by the projection
formula [H, Ex.II.5.1(d)], we have that π∗G ∼= π∗E ⊗ F , whose rank is equal
to r · degX · n!. Hence s = rn!. Lastly, in order to satisfy condition 2. of
Theorem 2.2, we need to show that G⊗OX(−dp) has vanishing cohomology
for 1 ≤ p ≤ n.
By condition 3. of Theorem 2.2 we have that π∗E is trivial, that is π∗E =
O⊕r·degXPn , therefore, by the projection formula [H, Ex.II.5.1(d)] and by The-
orem 1.24, we have that H•(X,G⊗OX(−dp)) = H•(X,G⊗ π∗OPn(−dp)) =
H•(Pn, π∗[G⊗π∗OPn(−dp)]) = H•(Pn, π∗G⊗OPn(−dp)) = H•(Pn, π∗E⊗F⊗
OPn(−dp)) =

⊕
r·degX H

•(Pn, F ⊗OPn(−dp)), which vanishes for 1 ≤ p ≤ n
by hypothesis.

2.2 Ulrich bundles on curves

Proposition 2.13. Let E be a rank r vector bundle on a curve C ⊆ PN of
degree d and genus g. The following conditions are equivalent:

1. E is an Ulrich vector bundle.

2. h0(C,E(−1)) = 0 and degE = r(d+ g − 1).

Proof. Applying the Riemann-Roch theorem to E(−1) we have

χ(C,E(−1)) = degE(−1) + r(1− g) = degE − rd+ r(1− g); (2.5)

on the other hand,

χ(C,E(−1)) = h0(C,E(−1))− h1(C,E(−1)). (2.6)

Now, if 1. holds, by condition 2. of Theorem 2.2 we have h0(C,E(−1)) =
h1(C,E(−1)) = 0. Therefore (2.5) vanishes and this proves 2. If 2. holds,
then (2.5) vanishes and by (2.6) we have that h1(C,E(−1)) = 0. Therefore
E satisfies condition 2. of Theorem 2.2, then E is Ulrich.

Definition 2.14. Let E be a vector bundle on X ⊆ PN , dimX = n. Then
E is arithmetically Cohen-Macaulay (ACM) if H i(X,E(t)) = 0 ∀ t ∈ Z and
for 0 < i < n.
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Let d be the degree of X in the embedding defined by OX(1). If E is an
ACM vector bundle of rank r, then the number m(E) of generators of the
graded module H0

∗ (X,E) :=
⊕

t∈ZH
0(X,E(t)) is ≤ rd, by [CS1, Thm.3.1].

Furthermore we notice that every vector bundle on a curve is ACM, since
the condition in Definition 2.14 is empty for n=1.

The following result is taken from [CS2, Prop.2.3].

Theorem 2.15. Let E be a rank r line bundle on a curve C ⊆ PN of degree
d and genus g. Assume h0(C,E(−1)) = 0. Then:

1. h0(C,E) ≤ rd.

2. degE ≤ r(d+ g − 1).

3. χ(C,E(n)) ≤ rd(n+ 1) ∀ n ∈ Z.

Furthermore, equality in any of the three conditions implies equality on the
other two, and is equivalent to E being an Ulrich bundle.

Proof. From the following exact sequence

0→ E(−1)→ E

and the vanishing of h0(C,E(−1)), it is clear that h0(C,E(−t)) = 0 ∀
t ≥ 1. Therefore H0

∗ (C,E) :=
⊕

t∈ZH
0(C,E(t)) =

⊕
t≥0H

0(C,E(t)) and
h0(C,E) ≤ m(E). By the previous observation, E is ACM and m(E) ≤ rd,
hence h0(C,E) ≤ rd, which gives 1. To prove 2. we apply the Riemann-Roch
theorem to E(−1) and we find

χ(C,E(−1)) = degE − rd+ r(1− g) = −h1(C,E(−1)) ≤ 0.

Hence degE ≤ r(d + g − 1). For statement 3., applying the Riemann-Roch
theorem to E(n) we have that

χ(C,E(n)) = degE + nrd+ r(1− g),

Then, substituting 2., we have χ(C,E(n)) = degE + nrd + r(1 − g) ≤
r(d+ g− 1) + nrd+ r(1− g) = rd(n+ 1). Now, it is clear that equality in 2.
is equivalent to equality in 3. Equality in 2. implies that χ(C,E(−1)) = 0,
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so H1(C,E(−1)) = 0, since H0(C,E(−1)) = 0 by hypothesis. Hence from
the exact sequence

0→ E(−1)→ E → E|H → 0,

whereH is a hyperplane section consisting of d points, that isH = p1 t · · · t pd,
we have that

0→ H0(C,E)→ H0(C,E|H)→ 0

is exact, therefore h0(C,E) = h0(C,E|H). Since E|H = E|p1 ⊕ · · · ⊕ E|pd =

O⊕rC|p1⊕· · ·⊕O
⊕r
C|pd , we have h0(C,E|H) =

d∑
i=1

h0(C,O⊕rC|pi) =
d∑
i=1

r·h0(C,OC|pi) =

rd, implying that h0(C,E) = rd, which gives equality in 1. Conversely, equal-
ity in 1. gives us that H0(C,E) = Krd and, as previously shown, we also
have H0(C,E|H) = Krd. Therefore, using the same exact sequence, we have
that

0→ H0(C,E)
ϕ−→ H0(C,E|H)

ψ−→ H1(C,E(−1))
α−→ H1(C,E)

is exact and that ϕ is an isomorphism. Hence Im(ϕ) = H0(C,E|H) = ker (ψ),
so ker (α) = Im(ψ) = 0, implying that α is injective. Furthermore, we
observe that, since H consists of d points, we have E|H ∼= E|H(n), hence
H0(C,E|H) = H0(C,E|H(n)) ∀ n ≥ 0. Let us consider a dividor D in the
linear system |OX(n)|, which is nonempty for n ≥ 0, and the following exact
sequence

0→ OX(−D)→ OX → OD → 0.

Tensoring with OX(D), we get the exact sequence

0→ OX → OX(D)→ OD ⊗OX(D)→ 0,

where OX(D) = OX(n). Now, if we consider the injective morphism

0→ OX → OX(n),

tensoring with E, we obtain another injective morphism

0→ E → E(n),

which gives us the inclusion H0(C,E) ⊆ H0(C,E(n)) ∀ n ≥ 0. Furthermore
we have a commutative diagram of sheaves



CHAPTER 2. ULRICH BUNDLES 26

0 E E(n)

0 E|H E|H(n)∼=

from which we obtain a commutative diagram of K-vector spaces

0 H0(C,E) H0(C,E(n))

0 H0(C,E|H) H0(C,E|H(n))

ϕ

∼=

ϕ(n)
β

where ϕ(n) is the map appearing in the following exact sequence:

H0(C,E(n))
ϕ(n)−−→ H0(C,E|H(n))

ψ(n)−−→ H1(C,E(n− 1))
α(n)−−→ H1(C,E(n)).

Since ϕ is an isomorphism, we have that β is an isomorphism, hence ϕ(n)
is surjective. Eventually we have that α(n) is injective ∀ n ≥ 0. We can
conclude that 0 ≤ h1(C,E(−1)) ≤ · · · ≤ h1(C,E(n − 1)) ≤ h1(C,E(n)),
which vanishes for some n� 0 by Serre’s vanishing theorem (condition 3. of
Thm. 1.20). Therefore h1(C,E(−1)) = 0, which implies χ(C,E(−1)) = 0,
which gives equality in 2., equivalent to equality in 3.

Moreover, by Proposition 2.13, we have that equality in 2. is equivalent
to E being an Ulrich bundle.



Chapter 3

Ulrich Vector Bundles on
Blow-ups

Our objective is to show that there exists an Ulrich vector bundle on the
blowing-up π : X̃ → X of a nonsingular projective variety X along a closed
point P ∈ X, given an Ulrich vector bundle E on (X,L), where L is a very
ample line bundle. In order to achieve our goal, some useful results are
needed.

Lemma 3.1. Let F and G be coherent sheaves on a scheme X. Assume
that there exists a surjective morphism f : F → G and that F is globally
generated. Then G is also globally generated.

Proof. By hypothesis we can write the following commutative diagram:

H0(X,F)⊗OX F

H0(X,G)⊗OX G

α

ψ f
β

,

where ψ := f(X) ⊗ id : H0(X,F) ⊗ OX → H0(X,G) ⊗ OX . Since α and f
are surjective, and since the diagramm is commutative, then it follows that
β is also surjective.

Lemma 3.2. Let X be a scheme, and let L be a very ample line bundle
on X corresponding to a closed immersion i : X → PN . Let P ∈ X be a
closed point. Then the natural restriction map ϕ : I{P}/PN → i∗I{P}/X is a
surjective morphism.

27
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Proof. In order to avoid confusion, let us consider X ⊆ PN .
If Q /∈ X, then (i∗I{P}/X)Q = 0, so ϕQ is surjective.
For Q ∈ X, let us take into consideration the natural morphism

ψ : OPN → i∗OX ,

which is surjective by hypothesis. Furthermore, since Q ∈ X, we have that
(i∗I{P}/X)Q = (I{P}/X)Q and that (i∗OX)Q = OX,Q.
If Q 6= P , we have that (I{P}/PN )Q = OPN ,Q and (I{P}/X)Q = OX,Q, there-
fore ϕQ = ψQ, which is surjective.
If Q = P , we have that (I{P}/PN )P and (I{P}/X)P are, respectively, the
maximal ideals of OPN ,P and OX,P , and that ϕP = (ψP )|(I{P}/PN )P . Since

ψP is a local ring surjective homomorphism, we have that ψP ((I{P}/PN )P ) =
(I{P}/X)P , therefore ϕP is surjective.

Proposition 3.3. Let P ∈ PN be a closed point, and let I be the corre-
sponding sheaf of ideals. Then I (1) is globally generated for all N ≥ 1.

Proof. In order to achieve the expected result, we show that I (1) is
0-regular, and we will be done by applying Theorem 1.45(1).

We need to show that H i(PN ,I (1− i)) = 0 for all 1 ≤ i ≤ N . For i > N ,
it follows by Grothendieck’s Theorem [H, Thm.III.2.7].
Tensoring

0→ I → OPN → O{P} → 0,

with OPN (1− i), and considering the corresponding long exact sequence, we
obtain the following exact sequence:

H i−1(PN ,I (1− i))→ H i−1(PN ,OPN (1− i)) αi−1−−→

H i−1(PN ,O{P}(1− i))
ϕi−1−−→ H i(PN ,I (1− i)) ψi−→ H i(PN ,OPN (1− i)).

For i = 1, we observe that H0(PN ,I ) = H1(PN ,OPN ) = 0 and that
H0(PN ,OPN ) = H0(PN ,O{P}) = K. It follows that α0 is an isomorphism
and that

1. ker (ϕ0) = Im(α0) = H0(PN ,O{P}) ⇒ Im(ϕ0) = 0,

2. Im(ϕ0) = ker (ψ1) = H1(PN ,I ),
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hence 0 = Im(ϕ0) = H1(PN ,I ).
For i ≥ 2, since dim {P} = 0 < i−1, we have that H i−1(PN ,O{P}(1−i)) = 0.
On the other hand, by Theorem 1.21, we have H i(PN ,OPN (1 − i)) = 0 for
1 ≤ i ≤ N . Therefore H i(PN ,I (1− i)) = 0 for 2 ≤ i ≤ N .

Corollary 3.4. Let X be a scheme, and let L be a very ample line bundle on
X corresponding to a closed immersion i : X → PN . Let P ∈ X be a closed
point. Then I{P}/X ⊗ L is globally generated.

Proof. By Lemma 3.2 and by tensoring with OPN (1), we have a surjective
morphism I{P}/PN⊗OPN (1)→ i∗I{P}/X⊗OPN (1). Therefore, by Lemma 3.1
and Proposition 3.3, we have that i∗I{P}/X ⊗OPN (1) is globally generated.
Furthermore we observe that, by the projection formula [H, Ex.II.5.1(d)],
i∗I{P}/X ⊗OPN (1) ∼= i∗(I{P}/X ⊗ i∗OPN (1)).
This implies that I{P}/X⊗ i∗OPN (1) = I{P}/X⊗L is globally generated.

The following result is taken from [BS, Thm.2.1].

Theorem 3.5. Let L be a very ample line bundle on a nonsingular projective
variety X, and let Y ⊆ X be a closed subscheme corresponding to a sheaf of
ideals I on X. Let π : X̃ → X be the blowing-up of X with respect to I ,
and let E = π−1(Y ) be the exceptional divisor.
Assume that I (t) = L⊗t⊗I is generated by global sections for some positive
integer t. Then (π∗L)⊗t

′ ⊗OX̃(−E) is very ample for t′ ≥ t+ 1.

Proof. We notice at first that it is sufficient to prove the theorem for t′ = t+1.
Indeed, since L is globally generated, we have that, for t′ ≥ t+1, (π∗L)⊗t

′−t−1

is globally generated. Therefore, if (π∗L)⊗t+1 ⊗ OX̃(−E) is very ample, we
have that (π∗L)⊗t

′ ⊗ OX̃(−E) = [(π∗L)⊗t
′−t−1] ⊗ [(π∗L)⊗t+1 ⊗ OX̃(−E)] is

very ample for t′ ≥ t + 1 by [H, Ex.II.7.5(d)]. Let Q ⊆ |L⊗t| be the linear
system corresponding to the image V of the canonical injecive map

H0(X,I (t))
j−→ H0(X,L⊗t).

We want to show that Bs(|V |) is equal to Y .
For all s ∈ V , ∃ σ ∈ H0(X,I (t)) such that j(σ) = s. Since, by definition of
ideal sheaf corresponding to Y , the following sequence is exact

0→ H0(X,I (t))
j−→ H0(X,L⊗t)→ H0(X,L⊗t ⊗OY )→ 0,
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we have that the sections in V vanishes at the all the points in Y .
On the other hand, for all x /∈ Y , I (t)x ∼= (L⊗t)x and I (t) is globally
generated by hypothesis, therefore ∃ σ ∈ H0(X,I (t)) such that σ(x) 6= 0,
hence s(x) = j(σ)(x) 6= 0 for some s ∈ V .
Let ϕ : X PN be the rational map associated to |V |. Then by Theorem
1.33(1) we have

Γϕ ∼= X̃ ⊆ X × PN ,
where Γϕ is the graph of ϕ. Note that the line bundle L � OPN (1) is very

ample, then, restricting to X̃ and using Theorem 1.33(2), we have that

L�OPN (1)|X̃
∼= π∗L ⊗ (ϕ ◦ π)∗OPN (1) ∼= (π∗L)⊗t+1 ⊗OX̃(−E)

is very ample.

Corollary 3.6. Let L be a very ample line bundle on a nonsingular projective
variety X, and let P ∈ X be a closed point corresponding to a sheaf of ideals
I on X. Let π : X̃ → X be the blowing-up of X with respect to I , and let
E = π−1({P}) be the exceptional divisor. Then (π∗L)⊗t⊗OX̃(−E) is a very

ample line bundle on X̃ for all t ≥ 2.

Proof. By Corollary 3.4, L ⊗ I is globally generated. Then, by applying
Theorem 3.5, we achieve our goal.

Theorem 3.7. Let L be a very ample line bundle on a nonsingular projective
variety X. Let P ∈ X be a closed point corresponding to a sheaf of ideals I
on X, and let π : X̃ → X be the blowing-up of X with respect to I . If there
exists an Ulrich vector bundle for (X,L), then there exists an Ulrich vector

bundle for (X̃, π∗L⊗2 ⊗ OX̃(−E)), where E = π−1({P}) is the exceptional
divisor.

Proof. Let us fix n = dimX. By Example 2.12, there exists an Ulrich vector
bundle F for (X,L⊗2). We aim to prove that π∗F ⊗ OX̃(−E) is an Ulrich

vector bundle for (X̃, π∗L⊗2 ⊗OX̃(−E)). Indeed:

(π∗F⊗OX̃(−E))⊗(π∗L⊗2⊗OX̃(−E))⊗(−p) = π∗(F⊗L⊗(−2p))⊗OX̃((p−1)E),

and by Proposition 1.32 we have that

H i(X̃, π∗(F ⊗ L⊗(−2p))⊗OX̃((p− 1)E)) = H i(X,F ⊗ L⊗(−2p))

for all i ≥ 0 and for 0 ≤ p−1 ≤ n−1. Therefore, since H i(X,F⊗L⊗(−2p)) = 0
for all i ≥ 0 and for 1 ≤ p ≤ n by applying to F condition 2. of Theorem
2.2, and since dimX = dim X̃, we achieve the expected result.
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Corollary 3.8. If every minimal surface carries an Ulrich vector bundle,
then there exists an Ulrich vector bundle on every nonsingular projective
surface.

Proof. It is sufficient to apply both Corollary 1.37 and Theorem 3.7.

Let us remark that a similar result to Corollary 3.8 is proved in [ACM,
Cor.3.8], while Theorem 3.7 provides an enhancement of [K, Thm.0.1].

We now take into account some applications of Corollary 3.8. By Theorem
1.40, we know that every minimal surface with Kodaira dimension equal to 0
can be classified by looking at the pair (pg, q) in {(0, 0), (0, 1), (1, 0), (1, 2)}.
An Ulrich vector bundle has been found for each of the four cases above, so
we achieve the following:

Corollary 3.9. Let S be a nonsingular projective surface such that k(S) = 0.
Then S admits an Ulrich vector bundle.

Proof. By [B2], [B3] (see also [C]), [F] and [B4], we obtain, respectively, that
Abelian, Enriques, K3 and bielliptic surfaces admit an Ulrich vector bundle.
Those surfaces are the minimal models for all nonsingular projective surfaces
with Kodaira dimension 0, by Theorem 1.40. Therefore it is sufficient to
apply both Corollary 1.37 and Theorem 3.7.

With regard to the minimal surfaces with Kodaira dimension−∞ (Propo-
sition 1.42), we can find some cases in which an Ulrich vector bundle is ad-
mitted. If S0 is equal to P2 or F0

∼= P1×P1, then S0 admits an Ulrich vector
bundle (for instance, respectively, OP2 and OP1 � OP1(1)). Let us suppose
that S0 = Fn, n > 1 (recall that Fn = P(OP1 ⊕OP1(n)) and note that in this
case the invariant e is equal to n), or S0 = PC(E), where E is a rank 2 vec-
tor bundle over a nonsingular projective curve C of genus g, with invariant
e > 0. Let π : S0 → C be the associated morphism, F be the fiber of π over
a fixed point p ∈ C, and let us denote by C0 the section with self-intersection
−e. Take A = C0 + bF with

b > max{e, (g − 1 + e)/2}. (3.1)

Since b > e, we deduce that A is ample by [H, Prop.V.2.20], hence there exists
m0 ≥ 0 such that H := mA = mC0 + mbF is very ample for all m ≥ m0.
Let us also assume that m > 3. In order to prove the existence of an Ulrich
vector bundle on S0, it is sufficient to verify that the very ample line bundle
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H on S0 satisfies condition (3) of [ACM, Thm.3.4], which translates into the
following:

2mb > max{(m− 3)(g − 1) +me, g − 1 +me}. (3.2)

If g ≥ 1, then (3.2) is equivalent to

2b > (1− 3/m)(g − 1) + e,

therefore (1 − 3/m)(g − 1) + e ≤ g − 1 + e < 2b by the hypothesis (3.1) on
b. If g = 0, then condition (3.2) is equivalent to 2b > −1/m + e, and it is
satisfied since b > e by the hypothesis (3.1) on b.
So H satisfies condition (3.2), and therefore there exists an Ulrich vector
bundle for (S0, H) by [ACM, Thm.3.4].

Corollary 3.10. Let S be a nonsingular projective surface with Kodaira
dimension k(S) = −∞, and let us assume that the minimal model of S is
within one of the following:

1. P2,

2. Fn for n ≥ 0 and n 6= 1,

3. PC(E) for a rank 2 vector bundle E over a nonsingular projective curve
C, with invariant e > 0.

Then S admits an Ulrich vector bundle.

Proof. By the previous observations, it is sufficient to apply both Corollary
1.37 and Theorem 3.7.
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